Plan Hidrológico de la parte española de la Demarcación Hidrográfica del Duero Revisión de tercer ciclo (2022-2027)

ANEJO 8.2

VALORACIÓN DEL ESTADO

MAYO 2021

Confederación Hidrográfica del Duero O.A.

DATOS DE CONTROL DEL DOCUMENTO

Título del proyecto:	Plan hidrológico de la parte española de la demarcación hidrográfica del Duero (2022-2027)	
Grupo de trabajo:	Planificación	
Título del documento:	Anejo 8.2. Valoración de Estado	
Descripción:	Valoración del estado de las masas de agua en la parte española de la demarcación hidrográfica del Duero	
Fecha de inicio (año/mes/día):	2020/09/10	
Autor:	OPH de la CHD	
SGPyUSA (plantilla inicial) Comisaría de Aguas CHD Dirección Técnica CHD Secretaría general CHD HEYMO		

REGISTRO DE CAMBIOS DEL DOCUMENTO

Fecha cambio (año/mes/día)	Autor de los cambios	Secciones afectadas / Observaciones

APROBACIÓN DEL DOCUMENTO

Fecha de aprobación (año/mes/día)	30/04/2021
Responsable de aprobación	Ángel J. González Santos

ÍNDICE

<u>1.</u>	INTRODUCCIÓN Y OBJETO	11
2.	BASE NORMATIVA	13
	2.1. Directiva Marco del Agua	
	2.2. Directiva de Normas de Calidad	14
	2.3. Ley de Aguas	14
	2.4. Reglamento de Planificación Hidrológica	14
	2.5. Instrucción de Planificación Hidrológica	15
	2.6. Novedades normativas respecto al II ciclo de planificación	15
	2.6.1. Real Decreto de evaluación del estado de las aguas superficiales y las norma	s de calidad
	ambiental	15
	2.6.2. Instrucción del Secretario de Estado de Medio Ambiente (SEMA 14-10-2020).	16
3.	CRITERIOS PARA LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL	17
	3.1. Condiciones de referencia y tipos de masas de agua superficial	17
	3.2. Evaluación del estado ecológico en ríos naturales	23
	3.2.1. Indicadores biológicos	24
	3.2.2. Indicadores físico-químicos	26
	3.2.3. Indicadores hidromorfológicos	30
	3.3. Evaluación del potencial ecológico en masas de agua artificiales y muy modificada	ıs
	asimilables a ríos	33
	3.3.1. Indicadores biológicos	33
	3.3.2. Indicadores físico-químicos	34
	3.3.3. Indicadores hidromorfológicos	34
	3.4. Evaluación del estado ecológico en lagos	
	3.4.1. Indicadores biológicos	35
	3.4.2. Indicadores físico-químicos	
	3.4.3. Indicadores hidromorfológicos	41
	3.5. Evaluación del potencial ecológico en masas de agua artificiales y muy modificada	
	asimilables a lagos (embalses o lagos con fuerte regulación)	
	3.5.1. Indicadores biológicos	
	3.5.2. Indicadores físico-químicos	
	3.5.3. Indicadores hidromorfológicos	
	3.6. Estado químico	
<u>4.</u>	CRITERIOS PARA LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUBTERRÁNE	
	4.1. Estado químico	
	4.2. Estado cuantitativo	
<u>5.</u>	RESULTADOS DE LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL	
	5.1. Estado o potencial ecológico	
	5.1.1. Síntesis del estado o potencial ecológico	
	5.2. Estado químico	
	5.2.1. Síntesis del estado químico	
	5.2.2. Contaminación química debida a la presencia de sustancias ubicuas	
	5.3. Estado global	
	5.3.1. Síntesis del estado global	84

	5.4. Cambios con respecto al plan 2016-2021	84
6	. RESULTADOS DE LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUBTERRÁNEA	86
	6.1. Estado químico	86
	6.1.1. Test 1: Evaluación general del estado químico	86
	6.1.2. Test 2: Test de salinización y otras intrusiones	88
	6.1.3. Test 3: MSPF asociadas a las aguas subterráneas	92
	6.1.4. Test 4: Ecosistemas dependientes de aguas subterráneas (ETDAS)	96
	6.1.5. Test 5: Zonas protegidas por captación de aguas de consumo (ZPAC)	98
	6.1.6. Evaluación final del estado químico	103
	6.1.7. Cambios con respecto al plan 2016-2021	107
	6.2. Estado cuantitativo	109
	6.2.1. Test 1: Balance hídrico	109
	6.2.2. Test 2: MSPF asociadas a aguas subterráneas, EAAS y mixtos EEAA-ETDAS	122
	6.2.3. Test 3: ETDAS (Ecosistemas terrestres dependientes de las aguas subterráneas)	125
	6.2.4. Test 4: Salinización y otras intrusiones	126
	6.2.5. Evaluación final del estado cuantitativo	127
	6.2.6. Cambios con respecto al plan 2016-2021	129
	6.3. Estado global	130

APÉNDICES

APÉNDICE I. INDICADORES DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL

APÉNDICE II. VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL

APÉNDICE III. COMPARATIVA ESTADO DE LAS MASAS DE AGUA SUPERFICIAL PH2C-PH3C

APÉNDICE VI. VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUBTERRÁNEA

APÉNDICE V. DETERMINACIÓN DEL VALOR UMBRAL EN MASAS DE AGUA SUBTERRÁNEA

APÉNDICE VI. CRITERIOS PARA LA EVALUACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL DE LA CATEGORÍA RÍO

APÉNDICE VII. PROTOCOLOS DE MUESTREO, LABORATORIO Y CÁLCULO DE ÍNDICES

APÉNDICE VIII. ÍNDICE EFI+INTEGRADO

Índice de tablas

Tabla 1. Tipos de masas de agua río natural	19
Tabla 2. Tipos de masas de agua AWB y HMWB asimilables a ríos	20
Tabla 3. Tipos de masas de agua lago natural	21
Tabla 4. Tipos de masas de agua AWB y HMWB asimilables a lagos (embalses)	23
. Tabla 5. Indicadores para la evaluación de los elementos de calidad biológicos en ríos utilizados por la CHD	24
Tabla 6. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador IPS en	ríos
naturales (Fuente: RDSE)	25
Tabla 7. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador IBN	1WP
en ríos naturales (Fuente: RDSE)	26
Tabla 8. Indicadores utilizados para la evaluación de los elementos de calidad físico-químicos de las masa	s de
agua río (Fuente: RDSE y Guía de evaluación del estado)	26
Tabla 9. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Amo	onio
(mg NH ₄ /L) en ríos naturales (Fuente: RDSE)	27
Tabla 10. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Fosf	
(mg PO ₄ /L) en ríos naturales (Fuente: RDSE)	27
Tabla 11. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Nitr	atos
(mg NO₃/L) en ríos naturales (Fuente: RDSE)	28
Tabla 12. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Oxíg	eno
disuelto (mg/l) en ríos naturales (Fuente: RDSE)	28
Tabla 13. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Tasa	a de
saturación de (%) en ríos naturales (Fuente: RDSE)	28
Tabla 14. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador pl	1 en
ríos naturales (Fuente: RDSE)	29
Tabla 15. Límites para establecer el buen estado de contaminantes específicos en aguas superfici	ales
continentales (Fuente: anexo V del RDSE y anexo 5 de la "Guía de evaluación del estado")	30
Tabla 16. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador QBI	R en
masas de agua ríos naturales (Fuente: RDSE)	31
Tabla 17. Indicadores hidromorfológicos definidos en el protocolo M-R-HMF-2019	31
Tabla 18. Indicadores para la evaluación de los elementos de calidad biológicos en lagos (Fuente: RDSE)	35
Tabla 19. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	ador
"Biovolumen total de fitoplancton" en lagos naturales (Fuente: RDSE)	35
Tabla 20. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "clore	ofila
a" en lagos naturales (Fuente: RDSE)	36
Tabla 21. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Riqu	ıeza
macrófitos" en lagos naturales (Fuente: RDSE)	36
Tabla 22. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	ador
"Cobertura macrófitos eutróficos" en lagos naturales (Fuente: RDSE)	36
Tabla 23. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	ador
"Cobertura macrófitos exóticas" en lagos naturales (Fuente: RDSE)	
Tabla 24. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	ador
"Cobertura helófitos" en lagos naturales (Fuente: RDSE)	
Tabla 25. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	
"Cobertura hidrófitos" en lagos naturales (Fuente: RDSE)	
Tabla 26. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	
"Cobertura total macrófitos" en lagos naturales (Fuente: RDSE)	
Tabla 27. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indica	
"Presencia de hidrófitos" en lagos naturales (Fuente: RDSE)	38

Tabla 28. Condiciones de referencia y límites de cambio de clase de estado	
en lagos naturales (Fuente: CHD)	
Tabla 29. Condiciones de referencia y límites de cambio de clase de QAELS_Duero2016 (o IBCAEL revisado) en lagos naturales (Fu	• •
Tabla 30. Indicadores para la evaluación de los elementos de calidad físico CHD (Fuente: RDSE)	•
Tabla 31. Indicadores para la evaluación de los elementos de calidad hidro	
Tabla 31. Illulcadores para la evaluación de los elementos de calidad flidic	
Tabla 32. Indicadores para la evaluación de los elementos de calidad hidro	
·	= -
de evaluación del estado)	
Tabla 33. Indicadores para la evaluación del potencial ecológico en	
modificadas asimilables a lagos (embalses) de la DHD (Fuente	
Tabla 34. Indicadores utilizados para la evaluación de los elementos de cali	=
RDSE)	
Tabla 35. Condiciones de referencia y límites de cambio de clase de pote	= :
IGA, % cianobacterias, Clorofila a y Biovolumen en embalses (•
Tabla 36. Clasificación del potencial ecológico de acuerdo al umbral RCE tra	
Tabla 37. Indicadores para la evaluación de los elementos de calidad físico-	·
la CHD	
Tabla 38. Límites para establecer el buen estado químico (Fuente: Anexo IV	
Tabla 39. Test de evaluación del estado químico de las MSBT	
Tabla 40. Riesgos en MSBT (en rojo) y masas sin riesgo establecido (verde) .	
Tabla 41 Parámetros análisis de estado	
Tabla 42. Valores Umbral (en amarillo valores umbral calculados sin filtrado	
Tabla 43. Test de evaluación del estado cuantitativo de las MSBT	
Tabla 44. Resultados de estado ecológico en ríos naturales	
Tabla 45. Resultados del grado de afección hidromorfológica en ríos natura	
Tabla 46. Resultados de potencial ecológico en AWB y HMWB modificadas a	
Tabla 47. Resultados del grado de afección hidromorfológica en ríos HMWB	
Tabla 48. Resultados de estado ecológico en lagos naturales	
Tabla 49. Resultados de potencial ecológico en AWB y HMWB asimilables a	• ,
Tabla 50. Síntesis estado/potencial ecológico en todas las MSPF	
Tabla 51. Resultados de estado químico en ríos naturales	
Tabla 52. Resultados de estado químico en AWB y HMWB asimilables a ríos	
Tabla 53. Resultados de estado químico en lagos naturales	
Tabla 54. Resultados de estado químico en AWB y HMWB asimilables a lago	os (embalses) 76
Tabla 55. Síntesis estado químico en las MSPF	
Tabla 56. Incumplimientos por mercurio detectados en 2019	
Tabla 57. Resultados de estado en ríos naturales	80
Tabla 58. Resultados de estado en AWB y HMWB asimilables a ríos	81
Tabla 59. Resultados de estado en lagos naturales	
Tabla 60. Resultados de estado en AWB y HMWB asimilables a lagos (emba	ılses)83
Tabla 61. Síntesis estado global en las MSPF	84
Tabla 62. Comparativa estado global MSPF PH2C-PH3C	84
Tabla 63. MSBT con mal estado químico por el Test 1 (General)	88
Tabla 64. Identificación de tendencias e impactos en test intrusión salina,	en MSBT con superación de VU por
parámetros relacionados con la intrusión salina	91
Tabla 65. MSBT con mal estado químico por el Test 2 (Intrusión)	92
Tabla 66 Correlación parámetros	94
Tabla 67. Test 3 (MSPF)	95

Tabla 68. MSBT con mal estado químico por el Test 3 (MSPF)	96
Tabla 69. Test 4 (ETDAS)	98
Tabla 70. MSBT con mal estado químico por el Test 4 (ETDAS)	98
Tabla 71 Evaluación del test de zonas protegidas por consumo humano	102
Tabla 72 Puntos de control en mal estado relacionados con ZPAC	102
Tabla 73. MSBT con mal estado químico por el Test 5 (ZPAC)	103
Tabla 74. Evaluación del estado químico	106
Tabla 75. Detalle sobre los incumplimientos en la evaluación del estado químico	109
Tabla 76 Componentes del cálculo del recurso disponible [hm³/año]. Fuente: Elaboración propia	114
Tabla 77. Índice de explotación de las masas de agua subterránea. Fuente: Elaboración propia	116
Tabla 78. Test 1 (Balance hídrico)	120
Tabla 79. MSBT con mal estado cuantitativo por el Test 1 (Balance hídrico)	121
Tabla 80. Test 2 (MSPF asociadas a aguas subterráneas, EAAS y mixtos EEAA-ETDAS)	124
Tabla 81. MSBT con mal estado cuantitativo por el Test 2 (MSPF)	125
Tabla 82. EDAS seleccionados test 4 estado cuantitativo	126
Tabla 83. MSBT con mal estado cuantitativo por el Test 4 (Intrusión)	127
Tabla 84. Evaluación del estado cuantitativo	129
Tabla 85. Evaluación del estado cuantitativo	130
Tabla 86. Evaluación del estado de las masas de agua subterránea	132
Tabla 87. Síntesis del estado de las masas de agua subterránea	133

Índice de figuras

Figura 1. Tipos de masas de agua río natural (condicionadas o no a medidas de restauración) (Fuente: CHD).	19
Figura 2. Tipos de masas de agua AWB y HMWB asimilables a ríos (Fuente: CHD)	20
Figura 3. Tipos de masas de agua lago natural (Fuente: CHD)	21
Figura 4. Tipos de masas de agua AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)	22
Figura 5. Hexágono aplicación del protocolo HMF (M-R-HMF-2019)	32
Figura 6. Esquema sintético del procedimiento a seguir para la valoración del potencial ecológico en masa	ıs de
agua artificiales y muy modificadas (embalses)	44
Figura 7. Esquema de clasificación del estado químico en masas de agua superficial	46
Figura 8. Test de evaluación del estado de las MSBT	50
Figura 9. Esquema de la evaluación del estado químico de las MSBT	52
Figura 10. Procedimiento general para el establecimiento de los Niveles de Referencia (niveles de fondo)	56
Figura 11. Criterio para el cálculo de los Valores Umbral	
Figura 12. Extracto de ficha para la determinación de los VU	
Figura 13. Esquema de la evaluación del estado cuantitativo de las MSBT	
Figura 14. Información sobre el estado de las masas de agua accesible a través de Mírame-IDEDuero	65
Figura 15. Resultados de estado ecológico en ríos naturales (Fuente: CHD)	66
Figura 16. Resultados del grado de afección hidromorfológica en ríos naturales (Fuente: CHD)	
Figura 17. Resultados de potencial ecológico en AWB y HMWB asimilables a ríos (Fuente: CHD)	
Figura 18. Resultados del grado de afección hidromorfológica en ríos HMWB (Fuente: CHD)	
Figura 19. Resultados de estado ecológico en lagos naturales (Fuente: CHD)	
Figura 20. Resultados de potencial ecológico en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)	
Figura 21. Resultados de estado/potencial ecológico en todas las MSPF (Fuente: CHD)	
Figura 22. Rsultados de estado químico en ríos naturales (Fuente: CHD)	
Figura 23. Resultados de estado químico en AWB y HMWB asimilables a ríos (Fuente: CHD)	
Figura 24. Resultados de estado químico en lagos naturales (Fuente: CHD)	
Figura 25. Resultados de estado químico en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)	
Figura 26. Resultados de estado químico en las MSPF (Fuente: CHD)	
Figura 27. Incumplimientos por mercurio detectados en 2019. (Fuente: CHD)	
Figura 28. Resultados de estado en ríos naturales (Fuente: CHD)	
Figura 29. Resultados de estado en AWB y HMWB asimilables a ríos (Fuente: CHD)	
Figura 30. Resultados de estado en lagos naturales (Fuente: CHD).	
Figura 31. Resultados de estado en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)	
Figura 32. Resultados de estado global en las MSPF (Fuente: CHD)	
Figura 33. Test de evaluación del estado químico (Fuente: MITECO)	
Figura 34. Resultados Test 1 (General)	
Figura 35. Detalle de la ficha de tendencias químicas	
Figura 36. Evolución piezométrica/concentración de sulfatos en masa 400067	
Figura 37. Resultados Test 2 (Intrusión)	
Figura 38. Resultados Test 3 (MSPF)	
Figura 39. Resultados Test 4 (ETDAS)	
Figura 40. Detalle estudio de tendencias en zonas protegidas por abastecimiento	
Figura 41. Resultados Test 5 (ZPAC)	
Figura 42. Estado químico de las masas de agua subterránea	
Figura 43. Índice de explotación de la masa o grupo de masas de agua subterránea	
Figura 44. Mapa de la distribución del recurso natural disponible por masa de agua	
Figura 45. Detalle de establecimiento de tendencias piezométricas en la MSBT 400047	
Figura 46. Resultados Test 1 (Balance hídrico)	. 121

Figura 47. Ejemplos de piezómetros cercanos a los puntos de incumplimiento de caudales ecológicos	123
Figura 48. Resultados Test 2 (MSPF)	125
Figura 49. Resultados evolución piezométrica cercana a EDAS en estudio	126
Figura 50. Resultados Test 4 (Intrusión)	127
Figura 51. Estado cuantitativo de las masas de agua subterránea	129
Figura 52. Estado global de las masas de agua subterránea	131

ABREVIATURAS USADAS EN EL DOCUMENTO

AEAS Asociación Española de Abastecimiento de Agua y Saneamiento.

AWB Masas de agua artificiales (Artificial Water Body/Bodies)

BOCyL Boletín Oficial de Castilla y León

BOE Boletín Oficial del Estado

CCAA Comunidades autónomas del estado español

CE Comisión Europea

CEE Comunidad Económica Europea

CHD Confederación Hidrográfica del Duero

DAS Directiva de Aguas Subterráneas

DG Dirección General

DGA Dirección General del Agua del MITERD

DHD Demarcación Hidrográfica del Duero

DI Documento Inicial en el proceso de EAE

DMA Directiva Marco del Agua. Directiva 2000/60/CE del Parlamento Europeo y del

Consejo, de 23 de octubre de 2000, por la que se establece un marco comunitario de

actuación en el ámbito de la política de aguas.

DOCE Diario Oficial de la Comunidad Europea

DR Documento de Referencia en el proceso de EAE

EAE Evaluación Ambiental Estratégica

EELL Entes Locales

EFI+ new European Fish Index

ENP Espacios Naturales Protegidos

ET Escenario tendencial o alternativa "0"

HMWB Masas de agua muy modificadas (Heavily Modified Water Body/Bodies)

IBA Área de importancia para las aves

IPH Instrucción de Planificación Hidrológica. ORDEN ARM/2656/2008, de 10 de

septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica.

ISA Informe de Sostenibilidad Ambiental

IPCC Panel Intergubernamental en el Cambio Climático

JE Junta de explotación

LBA Libro Blanco del Agua

LIC Lugar de Interés Comunitario. Directiva Hábitat (92/43/CEE)

MA Memoria Ambiental en el proceso de EAE

MAB Programa Hombre y Biosfera, de la UNESCO

MITECO Ministerio para la Transición Ecológica

MITERD Ministerio para la Transición Ecológica y Reto Demográfico

MOPT Ministerio de Obras Públicas y Transportes

MSBT Masa de agua subterránea MSPF Masa de agua superficial

NCA Norma de calidad ambiental

NCA-CMA NCA expresada como concentración máxima admisible

NCA-MA NCA expresada como media anual

OM Orden Ministerial

PES Plan Especial de actuación ante situaciones de alerta y eventual Sequía

PH Plan hidrológico

PHD Plan hidrológico de la cuenca del Duero

PHN Plan Hidrológico Nacional

RAPA Reglamento de la Administración Pública del Agua y de la Planificación Hidrológica

RDPH Reglamento del Dominio Público Hidráulico

RDSE Real Decreto 817/2015 de 11 de septiembre, por el que se establecen los criterios de

seguimiento y evaluación del estado de las aguas superficiales y las normas de

calidad ambiental.

SGPyUSA Subdirección General de Planificación y Uso Sostenible del Agua, de la Dirección

General del Agua (DGA) del MITERD

SPI Índice de Precipitación Estandarizado, de Mckee y otros (1993)

TRLA Texto Refundido de la Ley de Aguas. Real Decreto Legislativo 1/2001, de 20 de julio,

con las modificaciones de la Ley 62/2003, de 30 de diciembre, de medidas fiscales,

administrativas y de orden social.

ZEPA Zona de Especial Protección para las Aves

1. INTRODUCCIÓN Y OBJETO

Históricamente, se ha considerado al agua como un recurso con una mejor o peor calidad para satisfacer determinados usos, en función de los resultados obtenidos en la medición de algunos parámetros fisicoquímicos.

La Directiva Marco del Agua introduce el concepto de estado de las aguas, que amplía este enfoque de manera sustancial, otorgando al agua un papel fundamental en el funcionamiento de los ecosistemas hídricos, e integrando aspectos biológicos e hidromorfológicos, además de ampliar los parámetros físico-químicos tradicionalmente considerados. En el caso de las aguas subterráneas, se valora la cantidad de recurso disponible, y su estado químico, que puede tener repercusiones en la calidad ecológica de las aguas superficiales y de los ecosistemas terrestres asociados.

El estado de una masa de agua se define como el grado de alteración que presenta respecto a sus condiciones naturales. El estado puede clasificarse como "bueno o mejor" o "peor que bueno", y se obtiene de forma diferente en las aguas superficiales que en las subterráneas:

- El estado de las masas de agua superficial naturales está determinado por el peor valor de su estado ecológico y de su estado químico (artículo 26.1 del RPH). En el caso de las masas de agua superficial muy modificadas y de las masas de agua artificiales, el estado está determinado por el peor valor de su potencial ecológico y de su estado químico.
- El estado de las masas de agua subterránea está determinado por el peor valor de su estado cuantitativo y de su estado químico (artículo 32.1 del RPH).

Uno de los principales objetivos de la planificación hidrológica es conseguir el buen estado de las aguas (artículo 1.1 del RPH):

- En las masas de agua superficial, el estado "bueno o mejor" se alcanzará cuando tanto su estado (o potencial) ecológico como su estado químico sean, al menos, buenos.
- En las masas de agua subterránea, el estado "bueno" se alcanzará cuando tanto su estado cuantitativo como su estado químico sean, al menos, buenos.

Por tanto, la consecución del buen estado en las masas de agua superficial requiere alcanzar un buen estado (o potencial) ecológico y un buen estado químico, mientras que en las masas de agua subterránea requiere alcanzar un buen estado cuantitativo y un buen estado químico. En cualquier otra combinación de estados ecológico y químico, el estado de la masa de agua superficial se evalúa como "peor que bueno"; y en cualquier otra combinación de estados cuantitativo y químico, el estado de la masa de agua subterránea se evalúa como "peor que bueno". En el caso de que no se alcance el buen estado, se deberán poner en marcha medidas específicas para su consecución.

Los objetivos medioambientales que se deben alcanzar para conseguir una adecuada protección de las aguas incluyen, entre otros, prevenir el deterioro del estado de las masas de agua superficial y evitar el deterioro del estado de todas las masas de agua subterránea. En el caso de las aguas superficiales, se considerará que se ha producido un deterioro cuando la clasificación del estado ecológico o del estado químico de la masa de agua pase de una clase a otra clase en peor situación. Incluso debe considerarse también que se ha producido un deterioro cuando alguno de los

elementos de calidad disminuye de clase, aunque el mismo no sea el determinante del estado de la masa. Además, se considera que ha existido un deterioro de la masa de agua inicialmente clasificada como que no alcanza el buen estado químico, si se produce el incumplimiento de normas de calidad ambiental diferentes a las que motivaron la clasificación inicial.

Teniendo en cuenta lo anterior, la valoración del estado se convierte en una herramienta fundamental para dirigir los trabajos de planificación hidrológica, pues proporciona la información de partida necesaria sobre las masas de agua que alcanzan los objetivos y las masas de agua que no los alcanzan, orientan la definición de objetivos para el año horizonte, guían la toma de decisiones en la implantación del programa de medidas para corregir la situación de las masas en estado "peor que bueno" y posibilita el control de la evolución temporal y la evaluación de los resultados obtenidos tras la aplicación de las medidas previstas.

Los datos que se utilizan para diagnosticar el estado se obtienen de los programas de seguimiento del estado de las masas de agua que se describen en el Anejo 8.1, gestionados por el Área de Calidad de las Aguas, dependiente de la Comisaría de Aguas de la CHD.

No se da en la Demarcación ningún caso en el que una masa de agua esté controlada por más de una estación de seguimiento. En caso de que en una misma masa de agua existan varios puntos de control y/o varias medidas anuales para un mismo indicador, se utilizan todos los datos disponibles para calcular el valor medio anual del indicador en la masa, una vez descartados los no representativos.

En la Demarcación del Duero no se han realizado técnicas de agrupación de masas similares para su control y seguimiento, por consiguiente, no se incluye en el presente anejo una metodología de extrapolación de mediciones adscrita a esta práctica. El objeto de este anejo es ofrecer una visión general de los criterios aplicados por la CHD para la valoración del estado de las masas de agua superficial y subterráneas, y presentar los resultados de estado de los que partimos en este ciclo de planificación, tomando como referencia los registros del año 2019 y aplicado sobre las masas y tipologías actualizadas del horizonte de planificación.

Para la evaluación del estado que se presenta en este capítulo se han utilizado los indicadores, las condiciones de referencia y los límites de cambio de clase de estado o potencial que se recogen en la parte normativa del Plan Hidrológico.

2. BASE NORMATIVA

Como se ha mencionado previamente, el concepto de estado fue introducido con la aprobación de la Directiva 2000/60/CE, más conocida como Directiva Marco del Agua. En el Anexo V de esta Directiva desarrolla los contenidos relativos al estado de las aguas superficiales y subterráneas que han sido transpuestos al ordenamiento jurídico a nivel nacional.

De esta forma, el marco normativo para el establecimiento de evaluación de estado en el ámbito de actuación de la Confederación Hidrográfica del Duero viene definido en la Directiva Marco del Agua (DMA), el Texto refundido de la Ley de Aguas (TRLA) y el Reglamento de Planificación Hidrológica (RPH).

Si bien la Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica (IPH), desarrolla los contenidos del RPH definiendo la metodología para clasificar el estado de las masas de agua superficial y subterránea, hay que indicar que con la aprobación del Real Decreto 817/2015 de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental (en adelante RDSE), se derogan, entre otros, las disposiciones de la IPH que contradigan lo dispuesto en este Real Decreto y en particular, las tablas 8 a 23 del Capítulo 5 y las tablas 44 a 47 del anexo III de la IPH, así como el Real Decreto 60/2011, de 21 de enero sobre las normas de calidad ambiental en el ámbito de la política de aguas. Este RDSE se ha tenido en cuenta tanto para la definición del estado de las masas superficiales como para la adopción de las NCA en él recogidas.

Con el fin de servir de apoyo técnico a la mejora del proceso de evaluación del estado y potencial de las masas de agua se publica la "Guía para la evaluación del estado de las aguas superficiales y subterráneas", publicada por el MITERD el 16/10/2020, y aprobada por la Instrucción del Secretario de Estado de Medio Ambiente por la que se establecen los requisitos mínimos para la evaluación del estado de las masas de agua en el tercer ciclo de planificación hidrológica (SEMA 14-10-2020).

Este capítulo presenta un breve resumen de los contenidos de estos documentos en lo que se refiere a la valoración del estado.

2.1. Directiva Marco del Agua

La Directiva Marco de Aguas (DMA) 2000/60/CE define en su artículo 4 (1) los objetivos que se deben alcanzar en las masas de agua superficiales, subterráneas y zonas protegidas.

En su artículo 8 (1) establece que los estados miembros velarán por el establecimiento de programas de seguimiento del estado de las aguas con objeto de obtener una visión general coherente y completa del estado de las aguas.

2.2 Directiva de aguas subterráneas

Directiva 2006/118/EC del Parlamento Europeo y del Consejo, de 12 de diciembre de 2006, sobre la protección de las aguas subterráneas contra la contaminación y el deterioro, posteriormente actualizada por la Directiva 2014/80/UE de la Comisión, de 20 de junio de 2014.

Con esta nueva norma comunitaria, en desarrollo del art. 17 de la DMA, se establecen criterios para la evaluación del buen estado químico del agua subterránea, para la identificación de tendencias en la contaminación y para definir los puntos de partida para invertir las tendencias observadas. Igualmente, también se aportan medidas para limitar la entrada de contaminantes en las masas de agua subterránea.

2.2. Directiva de Normas de Calidad

Directiva 2008/105/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008, sobre normas de calidad ambiental en el ámbito de la política de aguas, posteriormente actualizada por la Directiva 2013/39/EU, del Parlamento Europeo y del Consejo, de 12 de agosto de 2013.

Con esta norma se despliegan las normas de calidad ambiental (NCA) para las sustancias prioritarias (anejo X de la DMA) y otros contaminantes a los que hace referencia el artículo 16 de la DMA. Además, entre otros contenidos, añade detalles de información sobre las determinaciones químicas (art. 3.5), las zonas de mezcla (art. 4) o los inventarios de emisiones, descargas y pérdidas (art. 5) que deben incorporarse a los planes hidrológicos revisados, e introduce el concepto de la lista de observación (art. 8b).

2.3. Ley de Aguas

El texto refundido de la Ley de Aguas (TRLA), compuesto por el Real Decreto Legislativo (RDL) 1/2001, de 20 de julio, y sus sucesivas modificaciones, entre las cuales cabe destacar la Ley 62/2003, de 30 de diciembre (Artículo 129) incorpora la mayor parte de los requerimientos de la DMA al ordenamiento jurídico español.

El artículo 40, en su apartado 1, se establece los objetivos de planificación hidrológica en referencia al estado de las masas de agua, entre los que se incluye la consecución del buen estado.

El artículo 92 ter incorpora también una breve mención al estado, indicando que en relación con los objetivos de protección se distinguirán diferentes estados o potenciales en las masas de agua, debiendo diferenciarse al menos entre las aguas superficiales, las aguas subterráneas y las masas de agua artificiales y muy modificadas.

2.4. Reglamento de Planificación Hidrológica

El Reglamento de Planificación Hidrológica (RPH), aprobado mediante el Real Decreto 907/2007, de 6 de julio, recoge el articulado y detalla las disposiciones del TRLA relevantes para la planificación hidrológica.

En su artículo 3, recoge las definiciones de estado de las aguas superficiales, estado de las aguas subterráneas, estado ecológico, buen estado ecológico, muy buen estado ecológico, potencial ecológico, buen potencial ecológico, máximo potencial ecológico, estado cuantitativo de las aguas subterráneas, buen estado cuantitativo de las aguas subterráneas, buen estado químico de las aguas subterráneas.

Además, cabe destacar su Sección 5ª, donde se establecen las directrices para la evaluación del estado de las aguas, dentro de los siguientes contenidos:

- Elementos de calidad para la clasificación del estado ecológico de los ríos y los lagos (artículos 27 y 28).
- Clasificación, evaluación y presentación del estado de las aguas superficiales (artículos 26 y 31).
- Clasificación, evaluación y presentación del estado de las aguas subterráneas (artículos 32 y 33).

Las definiciones normativas de las clasificaciones del estado ecológico están incluidas dentro de su Anexo V.

2.5. Instrucción de Planificación Hidrológica

La ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica (IPH) recoge y desarrolla los contenidos del Reglamento de Planificación Hidrológica (RPH) y del Texto refundido de la Ley de Aguas (TRLA).

Desarrollando los contenidos de los artículos 26 a 33 y del anexo V del RPH, la IPH en sus apartados 5.1 y 5.2 define la metodología para clasificar el estado de las masas de agua subterráneas. El apartado 5.2.2 de la IPH define la metodología para clasificar el estado de las masas de agua subterránea a partir de su estado cuantitativo y químico. El apartado 5.2.3.1 describe la metodología para evaluar el estado cuantitativo de una masa de agua subterránea. El apartado 5.2.3.2 describe los criterios y el procedimiento para evaluar el estado químico de las aguas subterráneas, de acuerdo con las estipulaciones de la Directiva 2006/118/CE relativa a la protección de las aguas subterráneas.

2.6. Novedades normativas respecto al II ciclo de planificación

2.6.1. Real Decreto de evaluación del estado de las aguas superficiales y las normas de calidad ambiental

El título III del Real Decreto 817/2015 de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental define la metodología para la clasificación del estado de las aguas superficiales.

Este real decreto define los indicadores de los elementos de calidad biológicos, hidromorfológicos y fisicoquímicos a utilizar en la clasificación para las masas de la categoría ríos, lagos, aguas de transición y aguas costeras.

2.6.2. Instrucción del Secretario de Estado de Medio Ambiente (SEMA 14-10-2020)

Esta Instrucción establece los requisitos mínimos para la evaluación del estado de las masas de agua en el tercer ciclo de planificación hidrológica.

Mediante esta Instrucción se aprueba la "Guía para la evaluación del estado de las aguas superficiales y subterráneas", en adelante "Guía de evaluación del estado", con el fin de servir de apoyo técnico a la mejora del proceso de evaluación del estado de las masas de agua.

La *Guía de evaluación del estado* es un documento complementario al marco normativo establecido, que viene a tratar de avanzar en las dificultades actualmente observadas que dan lugar a la aparición de heterogeneidades y significativas deficiencias en la aplicación de los criterios vigentes.

Tiene como objetivo servir de referencia a los Organismos de cuenca para configurar los programas de seguimiento y evaluar los estados de las masas de agua, tanto superficiales como subterráneos, de cara a su reflejo en la revisión de los planes hidrológicos de cuenca, de forma que sirva de base para definir las estaciones de medida que van a ser usadas en el diagnóstico del estado, las metodologías para el diagnóstico y el almacenamiento de información asociada y el horizonte de trabajo en los próximos años.

3. CRITERIOS PARA LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL

El estado de las masas de agua superficial queda determinado por el peor valor de su estado o potencial ecológico y de su estado químico. En función de ello, el diagnóstico de estado general de una masa de agua superficial podrá ser "bueno o mejor" o "peor que bueno".

El estado o potencial ecológico es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales. El estado ecológico de las masas de agua naturales se puede clasificar como muy bueno, bueno, moderado, deficiente o malo.

En el caso de las masas de agua artificiales o muy modificadas, donde no es posible alcanzar un buen estado ecológico, se determina su potencial ecológico, que se puede clasificar como máximo, bueno, moderado, deficiente o malo.

Para clasificar el estado o potencial ecológico de las masas de agua superficial se utilizan indicadores biológicos, físico-químicos e hidromorfológicos. El estado ecológico podrá clasificarse como muy bueno, bueno, moderado, deficiente o malo, mientras que el potencial ecológico se clasificará como bueno o superior, moderado, deficiente o malo.

Para clasificar el estado químico de las masas de agua superficial se utilizan únicamente indicadores de tipo físico-químico, pues lo que se evalúa es el cumplimiento de las normas de calidad ambiental (NCA) establecidas a nivel europeo por la Directiva 2013/39/UE, del Parlamento Europeo y del Consejo, de 12 de agosto de 2013, por la que se modifican las Directivas 2000/60/CE y 2008/105/CE en cuanto a las sustancias prioritarias en el ámbito de la política de aguas, y su transposición en el RDSE. Dicho estado químico podrá clasificarse como "bueno" o que "no alcanza el bueno".

Finalmente, con los resultados de estado ecológico y de estado químico de las masas de agua superficial naturales se evalúa el estado final, clasificándolo como "bueno o mejor", en caso de que su estado ecológico sea bueno o muy bueno y su estado químico sea bueno, o bien como "peor que bueno", en el resto de los casos. Con las masas de agua artificiales o muy modificadas se procede de un modo similar, obteniéndose un estado "bueno o mejor" cuando el potencial ecológico es bueno o superior y el estado químico es bueno, y un estado "peor que bueno" cuando no se cumplen ambas condiciones simultáneamente.

3.1. Condiciones de referencia y tipos de masas de agua superficial

El estado ecológico se evalúa comparando los valores de los indicadores biológicos, hidromorfológicos y físico-químicos registrados en los programas de seguimiento de cada masa de agua con los resultados que obtendrían dichos indicadores en condiciones inalteradas, que se denominan condiciones de referencia.

Las condiciones de referencia para los distintos indicadores se han definido a nivel estatal, a partir de los datos procedentes de estaciones de control situadas en áreas donde la influencia antrópica no es significativa, por lo que reflejan el estado correspondiente a niveles de presión nulos o muy bajos, sin

efectos debidos a urbanización, industrialización o agricultura intensiva, y con mínimas modificaciones biológicas, físico-químicas e hidromorfológicas. Esto supone que cuanto mayor sea la diferencia entre los valores obtenidos para los indicadores de los elementos de calidad en la masa de agua y las condiciones de referencia, mayor alteración habrá sufrido esa masa de agua y peor será su estado ecológico.

Por consiguiente, para poder clasificar el estado ecológico de las masas de agua superficial, es preciso conocer previamente los valores de referencia. En primer lugar, habrá que asignar un tipo a la masa de agua que tenga en consideración las particularidades de cada ecosistema, pues no se puede medir de igual manera, ni exigir los mismos niveles de los diferentes indicadores en ríos de zonas calcáreas que en ríos de zonas silíceas, en tramos fluviales del curso alto que en tramos fluviales más bajos, en lagos de origen cárstico que en lagos de origen alpino, etc.

Para la asignación de tipos, tras un estudio previo por masa de agua se ha utilizado la clasificación recogida en las tablas de tipos que figuran en el anexo II del RDSE. Los tipos de ríos naturales se han extraído del apartado A, los tipos de lagos se han extraído del apartado B y los tipos de masas de agua muy modificadas y artificiales asimilables a embalses se han extraído del apartado C.

La clasificación en tipos de las masas de agua muy modificadas asimilables a ríos se ha llevado a cabo de conformidad con los descriptores correspondientes a la categoría de aguas superficiales a la que más se parezcan, basándose en el Anexo II, apartado A, del RDSE. Las 3 masas de agua artificiales asimilables a río se han asemejado al tipo R-T15, entendiendo que los canales definidos como masas artificiales en la demarcación del Duero guardan ciertas semejanzas con las masas catalogadas como ejes mediterráneo-continentales poco mineralizados en nuestra cuenca. A continuación se recogen los tipos de las masas de agua pertenecientes a las diferentes categorías en la parte española de la demarcación hidrográfica del Duero.

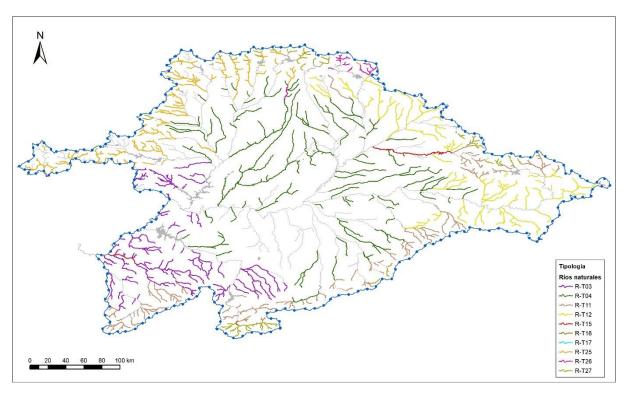


Figura 1. Tipos de masas de agua río natural (condicionadas o no a medidas de restauración) (Fuente: CHD)

Tipo	Denominación tipo	Nº masas de agua
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte	75
R-T04	Ríos mineralizados de la Meseta Norte	110
R-T11	Ríos de montaña mediterránea silícea	93
R-T12	Ríos de montaña mediterránea calcárea	59
R-T15	Ejes mediterráneo-continentales poco mineralizados	4
R-T25	Ríos de montaña húmeda silícea	71
R-T26	Ríos de montaña húmeda calcárea	9
R-T27	Ríos de alta montaña	38
	TOTAL	459

Tabla 1. Tipos de masas de agua río natural

Frente al plan de II ciclo, no se ha producido ningún cambio en cuanto a la tipología de las masas de agua naturales de la categoría río.

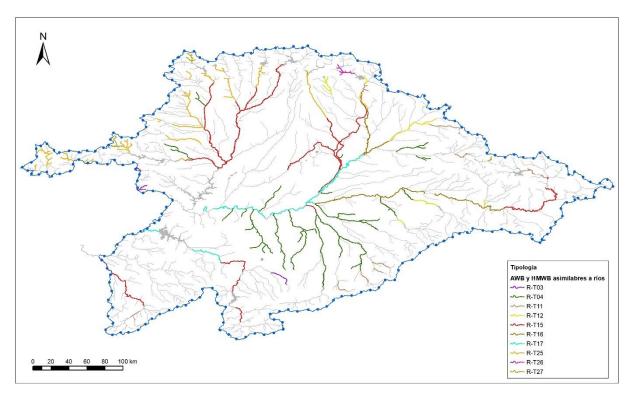


Figura 2. Tipos de masas de agua AWB y HMWB asimilables a ríos (Fuente: CHD)

Tipo	Denominación tipo	Nº masas de agua
R-T03	Ríos de las penillanuras silíceas de la meseta norte	3
R-T04	Ríos mineralizados de la Meseta Norte	45
R-T11	Ríos de montaña mediterránea silícea	13
R-T12	Ríos de montaña mediterránea calcárea	12
R-T15	Ejes mediterráneo-continentales poco mineralizados	42
R-T16	Ejes mediterráneo-continentales mineralizados	13
R-T17	Grandes ejes en ambiente mediterráneo	22
R-T25	Ríos de montaña húmeda silícea	31
R-T26	Ríos de montaña húmeda calcárea	2
R-T27	Ríos de alta montaña	4
	TOTAL	187

Tabla 2. Tipos de masas de agua AWB y HMWB asimilables a ríos

Frente al plan de II ciclo, no se ha producido ningún cambio en cuanto a la tipología de las masas de agua AWB y HMWB asimilables a ríos.

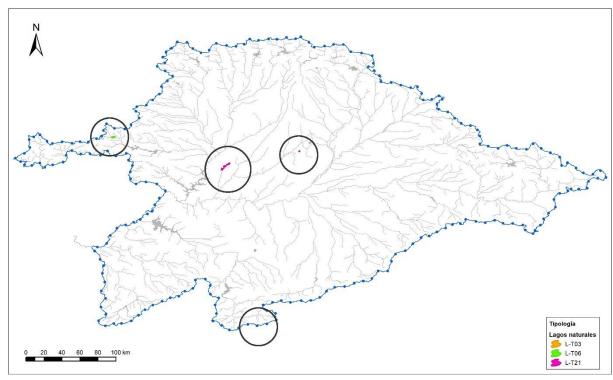


Figura 3. Tipos de masas de agua lago natural (Fuente: CHD)

Tipo	Denominación tipo	Nº masas de agua
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	2
L-T06	Media montaña, profundo, aguas ácidas	1
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	6
	TOTAL	9

Tabla 3. Tipos de masas de agua lago natural

Frente al plan del II ciclo, se ha actualizado el tipo de la masa 101113 - Complejo lagunar de Villafáfila, mineralización media (Laguna de la Fuente) y la masa 101108 — Laguna de Boada de Campos.

Estas lagunas, por sus características hidromorfológicas, básicamente escasa aportación y poca profundidad, poseen episodios de sequía prolongados y fluctuaciones muy acusadas de la salinidad. Esto ha impedido poseer series históricas significativas y prolongadas de valores de conductividad eléctrica que permitiesen caracterizar adecuadamente su tipología. En particular dominaban valores bajos, coincidentes con el periodo de llenado; los valores altos sólo se registrarían en periodos cercanos a la fase seca, los cuales, como son muy efímeros no se pudieron registrar debido a que no coincidieron con los programas de muestreo que estaban planificados para el seguimiento de todo el sistema lacustre de las lagunas temporales. En consecuencia, con los datos que se disponía, estas lagunas se incluyeron en el tipo 19.

Posteriormente, en la laguna de la Fuente se han ido registrando esporádicamente valores de conductividad eléctrica más elevados (incluso superiores a 3.000 µS/cm respectivamente), que además de producirse en las fases próximas a la sequía, se registraron en periodos de elevada

disponibilidad hídrica en la totalidad del sistema lacustre, cuando la laguna de la Fuente se conectaba hidrológicamente con la laguna de Barillos. Por este motivo, y porque en realidad se ha ido viendo que la laguna de la Fuente participa íntegramente de las características limnológicas generales del resto del sistema lacustre de las lagunas de Villafáfila, pertenecientes al grupo L-T21, se la incluye en el mismo grupo con objeto de disponer de un marco metodológico más adecuado para su valoración ecológica.

De la misma manera, en la laguna de Boada de Campos se han ido registrando esporádicamente valores superiores a 3.000 e incluso a 5.000 μ S/cm. Además, hay que tener en cuenta que esta laguna cuenta con el apoyo de un trasvase desde el Canal de Castilla que supone la entrada de agua mucho menos salina a la laguna. Es por ello que se incluye también en el grupo L-T21 con objeto de disponer de un marco metodológico más adecuado para su valoración ecológica.

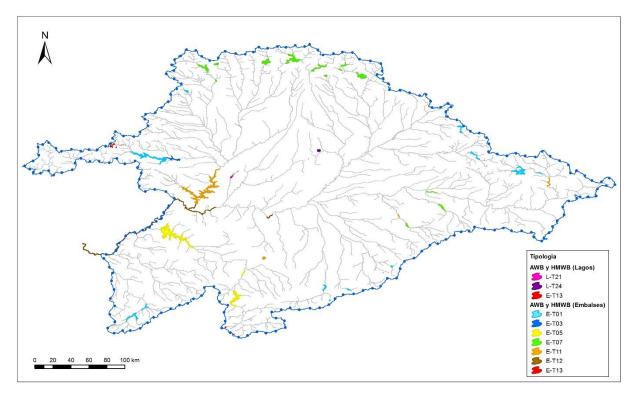


Figura 4. Tipos de masas de agua AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)

Categoría	Tipo	Denominación tipo	Nº masas de agua
	E-T01	Monomíctico, silíceo de zonas húmedas, con temperatura media anual menor de 15ºC, pertenecientes a ríos de cabecera y tramos altos	15
	E-T03	Monomíctico, silíceo de zonas húmedas, pertenecientes a ríos de la red principal	1
Río	E-T05	Monomíctico, silíceo de zonas no húmedas, pertenecientes a ríos de la red principal	3
	E-T07	Monomíctico, calcáreo de zonas húmedas, con temperatura media anual menor de 15ºC, pertenecientes a ríos de cabecera y tramos altos	14
	E-T11	Monomíctico, calcáreo de zonas no húmedas, pertenecientes a ríos de la red principal	4

Categoría	Tipo	Denominación tipo	Nº masas de agua
	E-T12	Monomíctico, calcáreo de zonas no húmedas, pertenecientes a tramos bajos de ejes principales	10
	E-T13	Dimíctico	1
	E-T13	Dimíctico	4
Lago	L-T24	Interior en cuenca de sedimentación, de origen fluvial, tipo llanura de inundación, mineralización baja o media	1
		TOTAL	53

Tabla 4. Tipos de masas de agua AWB y HMWB asimilables a lagos (embalses)

Frente al plan de II ciclo, no se ha producido ningún cambio en cuanto a la tipología de las masas de agua AWB y HMWB asimilables a ríos.

A nivel estatal se han definido condiciones de referencia para algunos indicadores y tipos concretos, basados en los datos procedentes de los puntos de control de la red de referencia, situados en áreas donde la influencia antrópica es poco significativa. A partir de ahí, para posibilitar la clasificación de estado ecológico se han asignado valores a cada límite de cambio de clase.

En el caso de los elementos de calidad biológicos, el límite entre bueno y moderado viene determinado por el rango de valores que se entiende que garantiza el funcionamiento del ecosistema. En los indicadores de estos elementos de calidad biológicos, la relación entre los valores observados en la masa de agua y los correspondientes a las condiciones de referencia del tipo al que pertenece dicha masa se expresa mediante un valor numérico normalizado comprendido entre 0 y 1 (Ratio de Calidad Ecológica, RCE).

Los elementos de calidad y los indicadores aplicables a las masas de agua artificiales y muy modificadas son los que resultan de aplicación a la categoría de aguas superficiales naturales que más se parece a la masa de agua artificial o muy modificada de que se trate. Dichos indicadores y sus valores de cambio de clase se han calculado tras determinar las condiciones de referencia para el máximo potencial, cuando esto no ha sido posible se han tomado los mismos umbrales de límite de cambio de clase que para las masas naturales.

Los valores disponibles de condiciones de referencia y umbral de corte entre clases se incluyen en los apartados posteriores de este anejo. Cuando el valor del indicador en la masa de agua coincide con el valor de corte entre dos categorías de estado, sin que esté especificado a cuál de ellas corresponde, se ha adoptado el criterio de asignarle la clase superior.

3.2. Evaluación del estado ecológico en ríos naturales

En los siguientes apartados se incluyen las particularidades en relación con la evaluación del estado ecológico de los ríos naturales que afectan a la parte española de la demarcación hidrográfica del Duero, las diferencias con el plan anterior, así como alguna de las novedades más destacadas que aporta la Guía de Evaluación del Estado. Para consultar el detalle en relación con la evaluación del estado se debe acudir a los documentos de referencia, que son el Documento de criterios de la CHD (apéndice VI) y la mencionada Guía.

Una de las novedades más relevantes en la evaluación de estado ecológico de los ríos en este Plan es la incorporación del EFI+ integrado como indicador de calidad biológico sensible a las presiones hidromorfológicas que sufren las masas de agua.

El índice EFI+integrado, es un índice resultante de la combinación de las métricas del índice de fauna piscícola EFI+ (índice new European Fish Index) y de los Indicadores indirectos de hábitat específicos para la fauna piscícola (IIdeH-FP). Estos indicadores indirectos permiten inferir de manera indirecta el estado biológico a través de su "soporte" hidromorfológico y se obtienen según lo establecido en los Protocolos de caracterización y cálculo de métricas de hidromorfología fluvial, aprobados el 22 de abril de 2019 por medio de Instrucción del Secretario de Estado de Medio Ambiente:

- Protocolo de caracterización hidromorfológica de masas de agua de la categoría ríos M-RHMF-2019.
- Protocolo para el cálculo de métricas de los indicadores hidromorfológicos de las masas de agua categoría río MET-R-HMF-2019.

En el presente anejo se recogen los resultados de la evaluación del estado de acuerdo al Documento de criterios de la CHD (apéndice VI de este anejo 8.2) y al RDSE, complementada con la valoración del grado de afección hidromorfológica evidenciado según el análisis realizado, masa a masa, de los distintos vértices.

3.2.1. Indicadores biológicos

La novedad más importante en cuanto a los indicadores biológicos de ríos en este plan hidrológico con respecto al anterior es que se ha utilizado el indicador EFI+ integrado, que es el indicador EFI+ complementado con los indicadores indirectos de hábitat, que representan las condiciones abióticas del medio necesarias para los peces.

Elemento de calidad	Indicador	Código del elemento	Protocolo de muestreo y laboratorio	Protocolo de cálculo de métricas
Flora acuática: organismos fitobentónicos	Índice de Poluosensibilidad específica (IPS)	QE1-2-4	ML-R-D-2013	<u>IPS-2013</u>
Fauna bentónica de invertebrados	Iberian Biomonitoring Working Party (IBMWP)	QE1-3	ML-Rv-l-2013	<u>IBMWP-2013</u>
Fauna ictiológica	Índice de fauna piscícola (EFI+INTEGRADO)	QE1-4	ML-R-FI-2015 M-R-HMF-2019	MET-R-HMF-2019

Tabla 5. Indicadores para la evaluación de los elementos de calidad biológicos en ríos utilizados por la CHD

En los muestreos de macrófitos se está recopilando información que aún no se puede incorporar a la valoración del estado, en espera de que se establezcan indicadores adecuados y se completen los correspondientes ejercicios de intercalibración que permitan definir las condiciones de referencia y los límites de corte entre clases.

Las condiciones de referencia y límites de cambio de clase de los indicadores biológicos de IPS e IBMWP figuran en el anexo II del RDSE y se muestran, para los tipos de masa río presentes en la parte española de la demarcación hidrográfica del Duero, en las tablas incluidas a continuación.

	Indicador: Índice de Poluosensibilidad específica (IPS)								
	2 11 1 2011			Límite de cambio de clases					
Tipo	Denominación tipo	Condición de referencia	RCE ¹ / Valor	Muy bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo		
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte	18,5	RCE Valor	0,93 17,2	0,70 13,0	0,46 8,5	0,23 4,3		
R-T04	Ríos mineralizados de la Meseta Norte	18,2	RCE Valor	0,91 16,6	0,68 12,4	0,46	0,23 4,2		
R-T11	Ríos de montaña mediterránea silícea	18,5	RCE Valor	0,94 17,4	0,71 13,1	0,47 8,7	0,24 4,4		
R-T12	Ríos de montaña mediterránea calcárea	18,0	RCE Valor	0,91 16,4	0,68 12,2	0,46 8,3	0,23 4,1		
R-T15	Ejes mediterráneo-continentales poco mineralizados	17,7	RCE Valor	0,98 17,3	0,73 12,9	0,49 8,7	0,24 4,2		
R-T16	Ejes mediterráneo-continentales mineralizados	16,4	RCE Valor	0,97 15,9	0,73 12,0	0,49	0,24 3,9		
R-T17	Grandes ejes en ambiente mediterráneo	12,9	RCE Valor	0,90 11,6	0,67 8,6	0,45 5,8	0,22 2,8		
R-T25	Ríos de montaña húmeda silícea	18,2	RCE Valor	0,94 17,1	0,70 12,7	0,47 8,6	0,24 4,4		
R-T26	Ríos de montaña húmeda calcárea	18,6	RCE Valor	0,93 17,3	0,70 13,0	0,47 8,7	0,23 4,3		
R-T27	Ríos de alta montaña	18,9	RCE Valor	0,94 17,8	0,71 13,4	0,47 8,9	0,24 4,5		

Tabla 6. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador IPS en ríos naturales (Fuente: RDSE)

Indicador: Iberian Biomonitoring Working Party (IBMWP)								
	Candisián de DCC/			L	Límite de cambio de clases			
Tipo	po Denominación tipo referencia	nminación tino	RCE/ Valor	Muy bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte	136	RCE Valor	0,76 103,4	0,46 62,6	0,27 36,7	0,12 16,3	
R-T04	Ríos mineralizados de la Meseta Norte	123	RCE Valor	0,75 92,3	0,46 56,6	0,27 33,2	0,11 13,5	
R-T11	Ríos de montaña mediterránea silícea	193	RCE Valor	0,82 158,3	0,50 96,5	0,30 57,9	0,12 23,2	
R-T12	Ríos de montaña mediterránea calcárea	186	RCE Valor	0,82 152,5	0,50 93,0	0,30 55,8	0,12 22,3	
R-T15	Ejes mediterráneo-continentales poco mineralizados	172	RCE Valor	0,69 118,7	0,42 72,2	0,24 41,3	0,10 17,2	
R-T16	Ejes mediterráneo-continentales mineralizados	136	RCE Valor	0,86 117,0	0,52 70,7	0,31 42,2	0,13 17,7	
R-T17	Grandes ejes en ambiente mediterráneo	107	RCE Valor	0,79 84,5	0,48 51,4	0,28 30,0	0,15 16,1	
R-T25	Ríos de montaña húmeda silícea	217	RCE Valor	0,71 154,1	0,44 95,5	0,26 56,4	0,11 23,9	
R-T26	Ríos de montaña húmeda	204	RCE	0,88	0,53	0,31	0,13	

¹ RCE (Ratio de calidad ecológica): Relación entre los valores observados en la masa de agua y los correspondientes a las condiciones de referencia del tipo al que pertenece dicha masa de agua, expresado mediante un valor numérico comprendido entre 0 y 1.

	Indicador: Iberian Biomonitoring Working Party (IBMWP)							
Tipo Denominación tipo Condición de RCE/ Límite de cambio de clases								
	calcárea		Valor	179,5	108,1	63,2	26,5	
D T27	T27 D' dll	RCE	0,87	0,53	0,32	0,13		
R-T27	Ríos de alta montaña	168	Valor	146,2	89,0	53,8	21,8	

Tabla 7. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador IBMWP en ríos naturales (Fuente: RDSE)

3.2.2. Indicadores físico-químicos

La principal novedad en lo relativo a los indicadores físico – químicos que computan para el estado ecológico ha sido la introducción de dos nuevos contaminantes específicos de cuenca, como son el glifosato y su metabolito AMPA, que se valorarán junto al resto de sustancias preferentes y cuyas NCA están recogidas en el anexo 5 de la Guía.

Elemento de calidad	Indicador	Código del elemento
Condiciones generales: Condiciones de oxigenación	Oxígeno disuelto (mg O ₂ /l) Tasa de saturación de oxígeno (%)	QE3-1-3
Condiciones generales: Estado de acidificación	рН	QE3-1-5
Condiciones generales: Nutrientes	Amonio total (mg NH ₄ /I) Fosfatos (mg PO ₄ /I) Nitratos (mg NH ₃ /I)	QE3-1-6
Contaminantes específicos (Sustancias Preferentes. Anexo V del RD 817/2015)	(1) Etilbenceno (2) Tolueno (3) 1,1,1-Tricloroetano (4) Xileno (suma isómeros orto, meta y para) (5) Terbutilazina (6) Arsénico (7) Cobre (8) Cromo VI (9) Cromo (10) Selenio (11) Zinc (12) Cianuros totales (13) Fluoruros (14) Clorobenceno (15) Diclorobenceno (suma isómeros orto, meta y para) (16) Metolacloro	QE3-3
Otros contaminantes específicos	Ácido aminometilfosfónico (AMPA) Glifosato	QE3-3

Tabla 8. Indicadores utilizados para la evaluación de los elementos de calidad físico-químicos de las masas de agua río (Fuente: RDSE y Guía de evaluación del estado)

Para alcanzar el objetivo de buen estado se han establecido como límites de cambio de clase los que especifica el anexo II del RDSE.

Las condiciones de referencia y límites de cambio de clase de los indicadores de condiciones generales de nutrientes (amonio, fostafos y nitratos), para todos los tipos de masa río presentes en la parte española de la demarcación hidrográfica del Duero, se muestran en las tablas incluidas a continuación.

Tipo	Denominación tipo	Condición de Referencia	Límite de cambio de clase (mg NH₄/L)		
		Referencia	Muy Bueno/ Bueno	Bueno/ Moderado	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		0,2	0,6	
R-T04	Ríos mineralizados de la Meseta Norte		0,3	1	
R-T11	Ríos de montaña mediterránea silícea		0,2	0,6	
R-T12	Ríos de montaña mediterránea calcárea		0,2	0,6	
R-T15	Ejes mediterráneo-continentales poco mineralizados		0,2	0,6	
R-T16	Ejes mediterráneo-continentales mineralizados		0,2	0,6	
R-T17	Grandes ejes en ambiente mediterráneo		0,3	1	
R-T25	Ríos de montaña húmeda silícea		0,2	0,6	
R-T26	Ríos de montaña húmeda calcárea		0,2	0,6	
R-T27	Ríos de alta montaña		0,2	0,6	

Tabla 9. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Amonio (mg NH₄/L) en ríos naturales (Fuente: RDSE)

Tipo	Denominación tipo	Condición de Referencia	Límite de cambio de clase (mg PO₄/L)		
		Referencia	Muy Bueno/ Bueno	Bueno/ Moderado	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		0,2	0,4	
R-T04	Ríos mineralizados de la Meseta Norte		0,2	0,4	
R-T11	Ríos de montaña mediterránea silícea		0,2	0,4	
R-T12	Ríos de montaña mediterránea calcárea		0,2	0,4	
R-T15	Ejes mediterráneo-continentales poco mineralizados		0,4	0,5	
R-T16	Ejes mediterráneo-continentales mineralizados		0,2	0,4	
R-T17	Grandes ejes en ambiente mediterráneo		0,2	0,4	
R-T25	Ríos de montaña húmeda silícea		0,2	0,4	
R-T26	Ríos de montaña húmeda calcárea		0,2	0,4	
R-T27	Ríos de alta montaña		0,2	0,4	

Tabla 10. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Fosfatos (mg PO₄/L) en ríos naturales (Fuente: RDSE)

Tipo	Denominación tipo	Condición de Referencia	Límite de cambio de clase (mg NO₃/L)		
	Referencia		Muy Bueno/ Bueno	Bueno/ Moderado	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		10	25	
R-T04	Ríos mineralizados de la Meseta Norte		10	25	
R-T11	Ríos de montaña mediterránea silícea		10	25	
R-T12	Ríos de montaña mediterránea calcárea		10	25	
R-T15	Ejes mediterráneo-continentales poco mineralizados		10	25	
R-T16	Ejes mediterráneo-continentales mineralizados		10	25	

Tipo	Denominación tipo	Condición de Referencia	(mg NO ₃ /L)	
		Referencia	Muy Bueno/ Bueno	Bueno/ Moderado
R-T17	Grandes ejes en ambiente mediterráneo		10	25
R-T25	Ríos de montaña húmeda silícea		10	25
R-T26	Ríos de montaña húmeda calcárea		10	25
R-T27	Ríos de alta montaña		10	25

Tabla 11. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Nitratos (mg NO₃/L) en ríos naturales (Fuente: RDSE)

Las condiciones de referencia y límites de cambio de clase de los indicadores de condiciones generales oxígeno disuelto, tasa de saturación de oxígeno y pH, se definen conforme al anexo II del RDSE, para todos los tipos de masa río presentes en la parte española de la demarcación hidrográfica del Duero, tal y como se refleja en las tablas incluidas a continuación.

Tina	Donominación tino	Condición de	Límite de cambio de clase
Tipo	Denominación tipo	Referencia	Bueno/ Moderado
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		5
R-T04	Ríos mineralizados de la Meseta Norte		5
R-T11	Ríos de montaña mediterránea silícea		5
R-T12	Ríos de montaña mediterránea calcárea		5
R-T15	Ejes mediterráneo-continentales poco mineralizados		5
R-T16	Ejes mediterráneo-continentales mineralizados		5
R-T17	Grandes ejes en ambiente mediterráneo		5
R-T25	Ríos de montaña húmeda silícea		5
R-T26	Ríos de montaña húmeda calcárea		5
R-T27	Ríos de alta montaña		5

Tabla 12. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Oxígeno disuelto (mg/l) en ríos naturales (Fuente: RDSE)

Habida cuenta que el indicador del oxígeno disuelto solo tiene definido en el RDSE un límite de cambio de clase bueno/moderado se ha considerado que cuando el resto de indicadores físico-químicos generales alcanzan el Muy Buen Estado, la valoración global para los indicadores de calidad físico-química será de Muy Buen Estado.

Tion	Denominación tipo	Condición de	Límite de cambio de clase		
Tipo		Referencia	Muy Bueno/ Bueno	Bueno/ Moderado	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		70-100	60-120	
R-T04	Ríos mineralizados de la Meseta Norte		70-100	60-120	
R-T11	Ríos de montaña mediterránea silícea		70-100	60-120	
R-T12	Ríos de montaña mediterránea calcárea		70-100	60-120	
R-T15	Ejes mediterráneo-continentales poco mineralizados		70-100	60-120	
R-T16	Ejes mediterráneo-continentales mineralizados		70-100	60-120	
R-T17	Grandes ejes en ambiente mediterráneo		70-105	60-120	
R-T25	Ríos de montaña húmeda silícea		70-100	60-120	
R-T26	Ríos de montaña húmeda calcárea		70-105	60-120	
R-T27	Ríos de alta montaña		70-100	60-120	

Tabla 13. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador Tasa de saturación de (%) en ríos naturales (Fuente: RDSE)

Tipo	Denominación tipo	Condición de	Límite de cambio de clase		
Про	Denomination tipo	Referencia		Bueno/ Moderado	
R-T03	Ríos de las penillanuras silíceas de la Meseta Norte		6-8,4	5,5-9	
R-T04	Ríos mineralizados de la Meseta Norte		6,5-8,7	6-9	
R-T11	Ríos de montaña mediterránea silícea		6,5-8,7	6-9	
R-T12	Ríos de montaña mediterránea calcárea		6,5-8,7	6-9	
R-T15	Ejes mediterráneo-continentales poco mineralizados		6,5-8,7	6-9	
R-T16	Ejes mediterráneo-continentales mineralizados		6,5-8,7	6-9	
R-T17	Grandes ejes en ambiente mediterráneo		6,5-8,7	6-9	
R-T25	Ríos de montaña húmeda silícea		6-8,4	5,5-9	
R-T26	Ríos de montaña húmeda calcárea		6,5-8,7	6-9	
R-T27	Ríos de alta montaña		6-8,4	5,5-9	

Tabla 14. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador pH en ríos naturales (Fuente: RDSE)

Para los contaminantes específicos, independientemente del tipo al que pertenezca la masa de agua río, se utilizan como valores umbral del buen estado las normas de calidad ambiental establecidas para aguas superficiales continentales en el anexo V del RDSE (Normas de calidad ambiental para sustancias preferentes) y en el anexo 5 de la "Guía de evaluación del estado" (Contaminantes específicos de cuenca. NCA recomendadas).

Elemento de calidad	Indicador	Nº CAS	NCA-Valor medio	anual (μg/l)
	1,1,1-Tricloroetano	71-55-6	10	
	Arsénico	7440-38-2		50
	Cianuros totales	74-90-8		40
	Clorobenceno	108-90-7		20
			Dureza en mg/l de CaCO₃	NCA-MA
			CaCO ₃ <= 10	5
	Cobre	7440-50-8	10 < CaCO ₃ <= 50	22
			50 < CaCO ₃ <= 100	40
Contaminantes específicos			CaCO ₃ > 100	120
(Sustancias Preferentes. Anexo V del RD 817/2015)	Cromo	7440-47-3	50	
. 46.112 62.7, 2025,	Cromo VI	18540-29-9	5	
	Diclorobenceno (suma isómeros orto, meta y para)	25321-22-6	20	
	Etilbenceno	100-41-4	30	
	Fluoruros	16984-48-8	1.700	
	Metolacloro	51218-45-2	1	
	Selenio	7782-49-2	1	
	Terbutilazina	5915-41-3	1	
	Tolueno	108-88-3		50
	Xileno (suma isómeros) 1330-20-7		30	

Elemento de calidad	Indicador	Nº CAS	NCA-Valor medio anual (μg/l)	
		7440-66-6	Dureza en mg/l de CaCO₃	NCA-MA
Zinc	Zinc		CaCO ₃ <= 10	30
			10 < CaCO ₃ <= 50	200
			50 < CaCO ₃ <= 100	300
			CaCO ₃ > 100	500
Otros contaminantes específicos (Anexo 5 de la "Guía	Ácido aminometilfosfónico (AMPA)	1066-51-9		1,6
de evaluación del estado")	Glifosato	1071-83-6	0,	

Tabla 15. Límites para establecer el buen estado de contaminantes específicos en aguas superficiales continentales (Fuente: anexo V del RDSE y anexo 5 de la "Guía de evaluación del estado")

Combinando los contaminantes específicos y los indicadores generales se obtiene la evaluación global de los elementos de calidad físico-químicos siguiendo la regla de "one out-all out". En síntesis, de acuerdo a los indicadores de los elementos de calidad físico-químicos, el estado ecológico de una masa de agua río se puede clasificar como moderado, bueno o muy bueno.

3.2.3. Indicadores hidromorfológicos

Hasta ahora, el RDSE solo incluía para los ríos condiciones de referencia y límites de cambio de clase para el indicador hidromorfológico del Índice de calidad del bosque de ribera (QBR).

	Indicador: Índice de calidad del bosque de ribera (QBR)					
Tipo	Denominación tipo	Condición de referencia	RCE ² / Valor	Límite de cambio de clases		
		Terefelicia	Valui	Muy Bueno/ Bueno		
R-T03	Ríos de las penillanuras silíceas de la Meseta	65	RCE	0,769		
K-103	Norte	03	Valor	49,99		
R-T04	Ríos mineralizados de la Meseta Norte	95	RCE	0,684		
K-104	Rios mineralizados de la Meseta Norte	95	Valor	64,98		
R-T11	Ríos de montaña mediterránea silícea	90	RCE	0,888		
V-111	Rios de montana mediterranea sincea	90	Valor	79,92		
R-T12	Ríos de montaña mediterránea calcárea	88	RCE	0,795		
K-112			Valor	69,96		
R-T15	Ejes mediterráneo-continentales poco	100	RCE	0,800		
K-112	mineralizados	100	Valor	80,00		
R-T16	Ejes mediterráneo-continentales mineralizados	85	RCE	0,857		
K-110	Ejes mediterraneo-continentales mineralizados	85	Valor	72,85		
R-T17	Crandos aias an ambiente moditorránce	80	RCE	0,875		
K-11/	Grandes ejes en ambiente mediterráneo	80	Valor	70,00		
R-T25	Ríos do montaña húmoda silísea	90	RCE	0,722		
K-125	Ríos de montaña húmeda silícea	90	Valor	64,98		
р тас	Días da mantaga húmada calaéras	400	RCE	0,950		
R-T26	Ríos de montaña húmeda calcárea	100	Valor	95,00		

² RCE (Ratio de calidad ecológica): Relación entre los valores observados en la masa de agua y los correspondientes a las condiciones de referencia del tipo al que pertenece dicha masa de agua, expresado mediante un valor numérico comprendido entre 0 y 1.

Indicador: Índice de calidad del bosque de ribera (QBR)					
Tipo Denominación tipo		Condición de referencia	RCE ² /	Límite de cambio de clases	
		referencia	Valor	Muy Bueno/ Bueno	
R-T27	D T27 Disa de elle menteïs		RCE	0,777	
K-127	Ríos de alta montaña	90	Valor	69,93	

Tabla 16. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador QBR en masas de agua ríos naturales (Fuente: RDSE)

La aprobación de los protocolos de caracterización hidromorfológica y de cálculo de métricas ha supuesto un importante paso para impulsar la caracterización hidromorfológica de las masas de agua río. Con la aprobación de la guía de evaluación del estado, la hidromorfología vuelve a participar en esta evaluación al ser un complemento de los indicadores biológicos.

Elemento de calidad	Indicador	Protocolo de muestreo y laboratorio	Protocolo de cálculo de métricas	
 Régimen hidrológico Caudal e hidrodinámica Caudales sólidos 	Indicadores de caracterización de las posibles fuentes de alteración hidrológica (ICAHs)			
2. Régimen hidrológico - Conexión con masas de agua subterránea	Grado de alteración de la conexión con aguas subterráneas			
3. Continuidad del río	ICL e IC			
4. Condiciones morfológicas del cauce: variación de la profundidad y anchura del río	Se definen a través de siete indicadores que permiten determinar la alteración morfométrica del cauce motivada por la existencia de obras de protección, estabilización, obstáculos transversales o zonas urbanizadas	M-R-HMF-2019 Guía de interpretación	<u>MET-R-HMF-</u> 2019	
5. Condiciones morfológicas del cauce: estructura y sustrato del lecho del río	Se definen a través de dos elementos de calidad, que cubren la evolución de la dinámica sedimentaria, de la estructura longitudinal del lecho, y de su estructura vertical.			
6. Condiciones morfológicas del cauce: estructura de la zona ribereña	Se definen a través de la estructura de la vegetación de ribera, composición de la vegetación de ribera y alteración de la dinámica ribereña			

Tabla 17. Indicadores hidromorfológicos definidos en el protocolo M-R-HMF-2019

El protocolo de caracterización hidromorfológica de masas de agua de la categoría ríos presenta 6 bloques de valoración, correspondientes a los aspectos cuyo análisis exige la DMA para determinar correctamente los indicadores hidromorfológicos de las masas de agua categoría río.

- 1. Régimen hidrológico
 - a. Caudal e hidrodinámica
 - b. Caudales sólidos
- 2. Régimen hidrológico Conexión con masas de agua subterránea
- 3. Continuidad del río.
- 4. Condiciones morfológicas del cauce: variación de la profundidad y anchura del río.
- 5. Condiciones morfológicas del cauce: estructura y sustrato del lecho del río.
- 6. Condiciones morfológicas del cauce: estructura de la zona ribereña.

Para cada uno de estos bloques se proponen indicadores de valoración, así como unos grados de alteración (potencial o medida, según lo posible en cada caso) y unos niveles de naturalidad de los indicadores. Finalmente, se propone un valor de naturalidad ponderada máxima por vértice, dado que no todos cuentan con la misma relevancia de cara a la valoración y a la definición del estado de los indicadores hidromorfológicos total. Cada uno de los bloques de valoración cuenta con un peso similar (expresado con una puntuación máxima de 10 sobre 60 puntos totales).

Así, para cada indicador, se tomará el valor correspondiente al valor de naturalidad que a su vez, será ponderado por el valor de naturalidad ponderada máximo que aportará la puntuación ponderada del indicador. Para cada tramo estudiado, se genera un gráfico donde, en forma de hexágono se representa cada uno de los bloques analizados en un eje numerado de 0 a 10. En la figura siguiente se muestra un ejemplo del hexágono.

CARACTERIZACIÓN DE LA HIDROMORFOLOGÍA DE LA MASA DE AGUA

Figura 5. Hexágono aplicación del protocolo HMF (M-R-HMF-2019)

A efectos de valoración del grado de afección hidromorfológica, para cada vértice se consideran los siguientes umbrales:

- Grado de afección MUY BAJO -> El rango de valores del vértice está entre 9 y 10.
- Grado de afección BAJO -> El rango de valores del vértice está entre 6 y 9.

- Grado de afección MODERADO -> El rango de valores del vértice está entre 3 y 6.
- Grado de afección ALTO-> El rango de valores del vértice está entre 0 y 3.

En el caso concreto de la parte española de la demarcación hidrográfica del Duero, dada el escaso recorrido de aplicación, se han realizado unas matizaciones al cálculo de índices recogidas en el anejo 1 del presente plan hidrológico del III ciclo.

3.3. Evaluación del potencial ecológico en masas de agua artificiales y muy modificadas asimilables a ríos

En las masas de agua artificiales o muy modificadas asimilables a ríos, se debe evaluar su potencial ecológico de forma análoga a la evaluación del estado ecológico en ríos naturales. El potencial ecológico se clasifica como bueno o superior, moderado, deficiente o malo, en función del peor valor obtenido para cada uno de los elementos de calidad valorados por separado.

Los elementos de calidad y los indicadores aplicables a estas masas de agua serán los que resulten de aplicación a la categoría de aguas superficiales naturales que más se parezca a la masa de agua artificial o muy modificada de que se trate. Como todas las masas de agua artificiales o muy modificadas objeto de este apartado son aquellas asimilables a la categoría río, los elementos de calidad e indicadores a controlar serán, salvo ciertas excepciones, los mismos que para evaluar el estado ecológico de ríos naturales.

CLASIFICACIÓN SEGÚN LOS IN DE ELEMENTO	POTENCIAL ECOLÓGICO	
BIOLÓGICOS	ECOLOGICO	
Bueno o superior	Bueno o superior	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado	-	Moderado
Deficiente	-	Deficiente
Malo	-	Malo

Tabla 4. Combinación de los indicadores de los elementos de calidad para la evaluación del potencial ecológico en AWB asimilables a río

CLASIFICACIÓN SEGÚN LOS II	POTENCIAL		
BIOLÓGICOS	BIOLÓGICOS FÍSICO-QUÍMICOS HIDROMORFOLÓGICOS		
Puono o suporior	Bueno o superior	Bueno o superior	Bueno o superior
Bueno o superior	Moderado	-	Moderado
Moderado	-	-	Moderado
Deficiente -		-	Deficiente
Malo	-	-	Malo

Tabla 4. Combinación de los indicadores de los elementos de calidad para la evaluación del potencial ecológico en HMWB asimilables a ríos

3.3.1. Indicadores biológicos

Para el cálculo del potencial ecológico de los ríos muy modificados se tienen en cuenta los mismos indicadores biológicos y se aplican los mismos protocolos que para ríos naturales (IPS e IBMWP). Sin

embargo, en los ríos artificiales (canales) se prescinde del IBMWP porque la propia estructura del canal dificulta e introduce un fuerte sesgo en los muestreos de macroinvertebrados, valorándose únicamente los organismos fitobentónicos a través del IPS.

Tanto para las masas de agua muy modificadas, como para las artificiales asimilables a río, se utilizan las mismas condiciones de referencia y valores umbral entre clases que para ríos naturales, en función del tipo asignado a la masa de agua, pero tomando el límite de corte bueno/moderado (de los ríos naturales) como límite de corte bueno o superior/moderado, ya que en este caso se debe valorar el potencial en lugar del estado ecológico.

3.3.2. Indicadores físico-químicos

Los indicadores físico-químicos de condiciones generales se aplican de la misma forma que para ríos naturales, a partir de las marcas de clase establecidas para los ríos naturales del mismo tipo de río, adoptando la clasificación como potencial bueno o superior en lugar de como estado muy bueno o bueno.

Asimismo, y al igual que en el caso de los ríos naturales, la evaluación del potencial ecológico de las masas de agua artificiales y muy modificadas deberá incorporar la valoración del cumplimiento o no de las NCA para los contaminantes específicos o sustancias preferentes incluidos en el anexo V del RDSE.

La metodología para la combinación de estos indicadores es la misma que se describe en el apartado correspondiente a los ríos naturales.

3.3.3. Indicadores hidromorfológicos

Para las masas de agua muy modificadas asimilables a ríos (ambientes lóticos), no se valora el indicador hidromorfológico previsto en el RDSE (QBR), diseñado para ríos naturales.

Se utilizan los vértices del protocolo de hidromorfología resultantes de la aplicación de las medidas de mitigación aplicables en cada de masa de agua, de acuerdo con lo indicado en la guía de evaluación del estado.

En las masas de agua artificiales, dado que han sido creadas por la actividad antrópica, no procede la evaluación de los indicadores hidromorfológicos descritos para ríos naturales.

3.4. Evaluación del estado ecológico en lagos

La clasificación del estado ecológico que se realiza en los lagos naturales sigue un esquema similar al indicado para los ríos naturales, pero en este caso aún no es posible aplicar ningún indicador hidromorfológico, y solo se utilizan indicadores biológicos de fauna bentónica de invertebrados, fitoplancton y otra flora acuática e indicadores físico-químicos de contaminantes específicos.

3.4.1. Indicadores biológicos

Para evaluar el estado ecológico de las masas de agua de la categoría lago se utilizan los indicadores biológicos que figuran en la siguiente tabla, puesto que, para todos ellos, se han establecido valores de referencia en el apartado B del anexo II del RDSE.

Elemento de calidad	Indicador	Código del elemento	Protocolo muestreo	Protocolo de cálculo de métricas
Composición, abundancia y biomasa de fitoplancton	Biovolumen total de fitoplancton (mm³/L) Concentración de Clorofila a (mg/m³)	QE1-1	M-LE-FP-2013	MFIT-2013. Versión 2
Composición y abundancia de otra flora acuática	Riqueza macrófitos Cobertura macrófitos eutróficos Cobertura macrófitos exóticas Cobertura helófitos Cobertura hidrófitos Cobertura total macrófitos Presencia de hidrófitos	QE1-2	M-L-OFM-2013	OFALAM-2013. Versión 1 y Documento Cedex ³
Fauna bentónica de invertebrados	IBCAEL QAELS_Duero2016 ⁽¹⁾	QE1-3	ML-L-I-2013	IBCAEL-2013

⁽¹⁾ Aunque el indicador QAELS_Duero2016 (o IBCAEL revisado), no aparece como tal en el RDSE, es un indicador que proviene del IBCAEL (con alguna adaptación) y ha sido aprobado por la DGA para su empleo y así se ha incluido en la "Guía para la evaluación del estado de las aguas superficiales y subterráneas. MITERD, Octubre 2020".

Tabla 18. Indicadores para la evaluación de los elementos de calidad biológicos en lagos (Fuente: RDSE)

La CHD muestrea de forma periódica el fitoplancton, otra flora acuática y la fauna bentónica de invertebrados. La fauna ictiológica se ha muestreado de manera puntual en el lago de Sanabria, pudiendo afirmarse que en el resto de las masas de agua de la categoría lago es inexistente o poco representativa.

Las condiciones de referencia y límites de cambio de clase del elemento de calidad **fitoplancton** (biovolumen y clorofila a) se definen conforme al anexo II del RDSE, para todos los tipos de masa lago presentes en la parte española de la demarcación hidrográfica del Duero, tal y como se refleja en las tablas incluidas a continuación.

	Indicador: Biovolumen total de fitoplancton (mm³/L)								
		Condición de	L	ímite de cambi	o de clase (RCE	·)			
Tipo	Denominación tipo	Referencia (mm³/L)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	1,4	0,67	0,55	0,37	0,18			
L-T06	Media montaña, profundo, aguas ácidas	0,4	0,47	0,26	0,16	0,08			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	No aplica	No aplica	No aplica	No aplica	No aplica			

Tabla 19. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Biovolumen total de fitoplancton" en lagos naturales (Fuente: RDSE)

³ "Selección de métricas para la evaluación del estado ecológico de las masas de agua del tipo lagos basadas en el elemento de calidad otra flora acuática, en aplicación de la Directiva Marco del Agua. Versión 1.0 (Madrid, diciembre de 2009)"

	Indicador: Concentración de Clorofila a (mg/m³)									
		Condición de	L	ímite de cambi	o de clase (RCE)				
Tipo	Denominación tipo	Referencia (mg/m³)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo				
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	1,3	0,68	0,49	0,34	0,17				
L-T06	Media montaña, profundo, aguas ácidas	1,5	0,65	0,36	0,21	0,11				
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	3,2	0,59	0,32	0,21	0,10				

Tabla 20. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "clorofila a" en lagos naturales (Fuente: RDSE)

Las condiciones de referencia y límites de cambio de clase del elemento de calidad de **otra flora acuática (macrófitos)** se definen conforme al anexo II del RDSE, para todos los tipos de masa lago presentes en la parte española de la demarcación hidrográfica del Duero, tal y como se refleja en las tablas incluidas a continuación.

	Indicador: Riqueza macrófitos								
		Condición de	L	ímite de cambi	o de clase (RCE)			
Tipo	Denominación tipo	Referencia (Nº Especies)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T06	Media montaña, profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	No aplica	No aplica	No aplica	No aplica	No aplica			

Tabla 21. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Riqueza macrófitos" en lagos naturales (Fuente: RDSE)

	Indicador: Cobertura macrófitos eutróficos								
	Denominación tipo	Condición de	L	ímite de cambi	o de clase (RCE)			
Tipo		Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	0	0,99	0,9	0,5	0,3			
L-T06	Media montaña, profundo, aguas ácidas	0	0,99	0,9	0,5	0,3			
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	0	0,99	0,9	0,5	0,3			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	0	0,99	0,9	0,5	0,3			

Tabla 22. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Cobertura macrófitos eutróficos" en lagos naturales (Fuente: RDSE)

	Indicador: Cobertura macrófitos exóticas								
	Denominación tipo	Condición de	L	ímite de cambi	o de clase (RCE)			
Tipo		Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	0	1	0,95	0,75	0,5			
L-T06	Media montaña, profundo, aguas ácidas	0	1	0,95	0,75	0,5			
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	0	1	0,95	0,75	0,5			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	0	1	0,95	0,75	0,5			

Tabla 23. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Cobertura macrófitos exóticas" en lagos naturales (Fuente: RDSE)

Indicador: Cobertura helófitos								
	Denominación tipo	Condición de	L	ímite de cambi	o de clase (RCE)		
Tipo		Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo		
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica		
L-T06	Media montaña, profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica		
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	No aplica	No aplica	No aplica	No aplica	No aplica		
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	70	0,86	0,5	0,28	0,01		

Tabla 24. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Cobertura helófitos" en lagos naturales (Fuente: RDSE)

	Indicador: Cobertura hidrófitos								
		Condición de	L	ímite de cambi	o de clase (RCE	:)			
Tipo	Denominación tipo	Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T06	Media montaña, profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	65	0,92	0,61	0,3	0,01			

Tabla 25. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Cobertura hidrófitos" en lagos naturales (Fuente: RDSE)

	Indicador: Cobertura total macrófitos								
	Denominación tipo	Condición de	L	ímite de cambi	o de clase (RCE	:)			
Tipo		Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T06	Media montaña, profundo, aguas ácidas	No aplica	No aplica	No aplica	No aplica	No aplica			
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	90	0,83	0,55	0,28	0,11			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	No aplica	No aplica	No aplica	No aplica	No aplica			

Tabla 26. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Cobertura total macrófitos" en lagos naturales (Fuente: RDSE)

	Indicador: Presencia de hidrófitos								
	Denominación tipo	Condición de	L	ímite de cambi	o de clase (RCE)			
Tipo		Referencia (%)	Muy Bueno/ Bueno	Bueno/ Moderado	Moderado/ Deficiente	Deficiente/ Malo			
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	Presencia	Presencia	Presencia	Presencia	Presencia			
L-T06	Media montaña, profundo, aguas ácidas	Presencia	Presencia	Presencia	Presencia	Presencia			
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	Presencia	Presencia	Presencia	Presencia	Presencia			
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	Presencia	Presencia	Presencia	Presencia	Presencia			

Tabla 27. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador "Presencia de hidrófitos" en lagos naturales (Fuente: RDSE)

En cuanto a la fauna bentónica de invertebrados, siguiendo los criterios del Plan Hidrológico 2009-2015, a pesar de haberse calculado otros índices como el IBCAEL (que ha presentado diversas incertidumbres metodológicas), la CHD ha seguido aplicando el índice QAELS (Índex de qualitat de l'aigua d'ecosistemes lenítics somers), elaborado en origen para la determinación del estado ecológico de los sistemas lagunares someros de Cataluña (ACA, 2004). Este índice cuenta con la ventaja, sobre el resto de índices existentes para otros elementos de calidad biológicos en lagos, de su consistencia como índice, ya que integra la abundancia y la composición (diferenciando el grado de tolerancia de las especies) y también cuenta con el conocimiento que se dispone de la fauna bentónica de lagos en España, cuyos elementos indicadores más explicativos de su estado resultan ser los microcrustáceos bentónicos. Este índice se ha adaptado a los lagos de la cuenca del Duero (QAELS_Duero2016) introduciendo los taxones específicos que aparecen en nuestro territorio, que no se habían inventariado en Cataluña, y adaptando los valores de todos los taxones a los diferentes tipos de lagos. El índice se calcula a partir de dos métricas: ACCO (basada en la abundancia de cladóceros, copépodos y ostrácodos) y RIC (basado en la riqueza de insectos y crustáceos). El valor asignado a cada taxón se fundamenta en su grado de estenoicidad (preferencias de hábitat especializado) o de fidelidad a cada tipo de lago, de forma que obtienen mayor puntuación las especies que primero desaparecen cuando las condiciones que definen el tipo se desvirtúan. El procedimiento seguido ha consistido en identificar, en una primera fase del trabajo, las comunidades propias de cada tipo de masa de agua de la categoría lago siguiendo los criterios de Alonso (1998). Seguidamente, dentro de cada comunidad, se identifican los taxones indicadores fijando el valor de calidad de cada taxón según criterio experto; por último se calcula el índice.

		Candiaión da	Valores límite			
Tipo	Denominación tipo	Condición de Referencia	Muy bueno / bueno	Bueno / Moderado	Moderado / Deficiente	Deficiente / Malo
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas	8,62	0,92	0,69	0,46	0,23
L-T06	Media montaña, profundo, aguas ácidas	4,66	0,93	0,69	0,46	0,23
L-T19	Interior en cuenca de sedimentación, mineralización media, temporal	6,78	0,8	0,6	0,4	0,2
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal	6,78	0,8	0,6	0,4	0,2

Tabla 28. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador IBCAEL en lagos naturales (Fuente: CHD)

Para el cálculo del "QAELS_Duero2016" se sigue el mismo procedimiento que para el IBCAEL, pero con las siguientes puntualizaciones: nuevas especies indicadoras y valores de sensibilidad y actualización de las condiciones de referencia y límites de cambio de clase, incluidas en la Tabla 29.

TIPO IBCAEL	Valor de ref.	MUY BUENO	BUENO	MODERADO	DEFICIENTE	MALO
664	10.11	IBCAEL ≥ 8,84	6,63 ≤ IBCAEL< 8,84	4,42 ≤ IBCAEL< 6,63	2,21 ≤ IBCAEL< 4,42	IBCAEL< 2,21
GC1	10,11	EQR ≥ 0,87	0,66 ≤ EQR < 0,87	$0,44 \le EQR < 0,66$	0,22 ≤ EQR < 0,44	EQR < 0,22
GC2	11,23	IBCAEL ≥ 10,82	8,12 ≤ IBCAEL< 10,82	5,41 ≤ IBCAEL< 8,12	2,71 ≤ IBCAEL< 5,41	IBCAEL< 2,71
GCZ	11,23	EQR ≥ 0,96	0,72 ≤ EQR < 0,96	0,48 ≤ EQR < 0,72	0,24 ≤ EQR < 0,48	EQR < 0,24
GC3	9,94	IBCAEL ≥ 9,14	6,85 ≤ IBCAEL< 9,14	4,57 ≤ IBCAEL< 6,85	2,28 ≤ IBCAEL< 4,57	IBCAEL< 2,28
GCS	9,94	EQR ≥ 0,92	0,69 ≤ EQR < 0,92	$0,46 \le EQR < 0,69$	$0,23 \le EQR < 0,46$	EQR < 0,23
GC4	7,38	IBCAEL ≥ 6,40	4,80 ≤ IBCAEL< 6,40	3,20 ≤ IBCAEL< 4,80	1,60 ≤ IBCAEL< 3,20	IBCAEL< 1,60
GC4	7,36	EQR ≥ 0,87	0,65 ≤ EQR < 0,87	0,43 ≤ EQR < 0,65	$0,22 \le EQR < 0,43$	EQR < 0,22
GC5	6,03	IBCAEL ≥ 5,29	3,97 ≤ IBCAEL< 5,29	2,64 ≤ IBCAEL< 3,97	1,32 ≤ IBCAEL< 2,64	IBCAEL< 1,32
GCS	0,03	EQR ≥ 0,88	0,66 ≤ EQR < 0,88	$0,44 \le EQR < 0,66$	0,22 ≤ EQR < 0,44	EQR < 0,22
GC6	3,92	IBCAEL ≥ 3,12	2,34 ≤ IBCAEL< 3,12	1,56 ≤ IBCAEL< 2,34	0,78 ≤ IBCAEL< 1,56	IBCAEL< 0,78
GC6		EQR ≥ 0,80	0,60 ≤ EQR < 0,80	$0,40 \le EQR < 0,60$	$0,20 \le EQR < 0,40$	EQR < 0,20
GC7	10,20	IBCAEL ≥ 9,0	6,75 ≤ IBCAEL<9,0	4,50 ≤ IBCAEL< 6,75	2,25 ≤ IBCAEL< 4,50	IBCAEL< 2,25
GCI	10,20	EQR ≥ 0,90	0,68 ≤ EQR < 0,90	$0,45 \le EQR < 0,68$	0,23≤ EQR < 0,45	EQR < 0,23
GC8	8,90	IBCAEL ≥ 5,76	4,32 ≤ IBCAEL< 5,76	2,88 ≤ IBCAEL< 4,32	1,44 ≤ IBCAEL< 2,88	IBCAEL< 1,44
GC6	0,90	EQR ≥ 0,65	0,48 ≤ EQR < 0,65	0,32 ≤ EQR < 0,48	0,16 ≤ EQR < 0,32	EQR < 0,16
GC9	9,84	IBCAEL ≥ 8,50	6,38 ≤ IBCAEL< 8,50	4,25 ≤ IBCAEL< 6,38	2,13 ≤ IBCAEL< 4,25	IBCAEL< 2,13
GC9	9,04	EQR ≥ 0,86	0,65 ≤ EQR < 0,86	$0,43 \le EQR < 0,65$	$0,22 \le EQR < 0,43$	EQR < 0,22
GC10	6,62	IBCAEL ≥ 4,97	3,73 ≤ IBCAEL< 4,97	2,48 ≤ IBCAEL< 3,73	1,24 ≤ IBCAEL< 2,48	IBCAEL< 1,24
GC10	0,02	EQR ≥ 0,75	0,56 ≤ EQR < 0,75	$0.37 \le EQR < 0.56$	0,19 ≤ EQR < 0,37	EQR < 0,19
GC11	4,33	IBCAEL ≥ 4,21	3,16 ≤ IBCAEL< 4,21	2,10 ≤ IBCAEL< 3,16	1,05 ≤ IBCAEL< 2,10	IBCAEL< 1,05
GCII	4,33	EQR ≥ 0,97	0,73 ≤ EQR < 0,97	$0,49 \le EQR < 0,73$	$0,24 \le EQR < 0,49$	EQR < 0,24
GC12	11,00	IBCAEL ≥ 8,80	6,60 ≤ IBCAEL< 8,80	4,40 ≤ IBCAEL< 6,60	2,20 ≤ IBCAEL< 4,40	IBCAEL< 2,20
GC12	11,00	EQR ≥ 0,80	0,60 ≤ EQR < 0,80	$0,40 \le EQR < 0,60$	$0,20 \le EQR < 0,40$	EQR < 0,20
GC13	9,01	IBCAEL ≥ 7,21	5,41 ≤ IBCAEL< 7,21	3,61 ≤ IBCAEL< 5,41	1,80 ≤ IBCAEL< 3,61	IBCAEL< 1,80
GCI3	9,01	EQR ≥ 0,80	0,60 ≤ EQR < 0,80	0,40 ≤ EQR < 0,60	$0,20 \le EQR < 0,40$	EQR < 0,20

Tabla 29. Condiciones de referencia y límites de cambio de clase de estado ecológico para el indicador QAELS_Duero2016 (o IBCAEL revisado) en lagos naturales (Fuente: CHD)

Como en todos los demás casos, para obtener una clasificación del estado/potencial ecológico de la masa de agua lago en función de los indicadores biológicos se aplica el principio "one out-all out", según el cual se debe escoger el peor valor obtenido para cada uno de los elementos de calidad

biológicos por separado; es decir, el resultado más desfavorable entre el fitoplancton, macrófitos e invertebrados bentónicos. De acuerdo a lo anterior, el indicador con la valoración más baja es el que condiciona la evaluación del estado/potencial ecológico.

3.4.2. Indicadores físico-químicos

Siguiendo los criterios establecidos por la normativa vigente, en la evaluación de los elementos de calidad físico-químicos de lagos se han tenido en cuenta tanto las condiciones físico-químicas generales como los contaminantes específicos, incluidos en el RDSE. En cuanto a los contaminantes específicos, se consideran como tales, a efectos de cálculo del estado ecológico, aquellas sustancias preferentes incluidas en el anexo V del RDSE (Normas de calidad ambiental para sustancias preferentes).

Concretamente, los indicadores físico-químicos considerados en la evaluación del estado ecológico son los detallados a continuación.

Elemento de calidad	Indicador	Código del elemento
Condiciones generales: Transparencia	Profundidad de visión del disco de Secchi	QE3-1-1
Condiciones generales: Estado de acidificación	рН	QE3-1-5
Condiciones generales: Nutrientes	Fósforo total	QE3-1-6
Contaminantes específicos	Contaminantes específicos (sustancias preferentes) incluidas en el anexo V del RDSE.	QE3-3

Tabla 30. Indicadores para la evaluación de los elementos de calidad físico-químicos en lagos utilizados por la CHD (Fuente: RDSE)

Las condiciones de referencia y límites de cambio de clase de los indicadores de condiciones generales de transparencia (Profundidad de visión del disco de Secchi), estado de acidificación (pH) y nutrientes (fosforo total), para todos los tipos de masa lagos naturales presentes en la parte española de la demarcación hidrográfica del Duero, se muestran en las tablas incluidas a continuación.

	Indicador: Profundidad de visión del disco de Secchi				
Tino	The Boundary (C. 1)		Límite de cambio de clase (m)		
Tipo	Denominación tipo	Referencia	Muy Bueno/ Bueno	Bueno/ Moderado	
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas		4,5	3	
L-T06	Media montaña, profundo, aguas ácidas		4	1	
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal		No aplica	No aplica	

Tabla 71. Condiciones de referencia y límites de cambio de clase de estado ecológico para el Disco Secchi en masas de agua lago naturales. (Fuente: RDSE)

	Indicador: pH				
	Candisión de		Límite de cambio de clase		
Tipo	Denominación tipo	Condición de Referencia	Bueno/ Moderado	Moderado/ Deficiente	
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas		6-9	≤6 o ≥9	
L-T06	Media montaña, profundo, aguas ácidas		6-8,7	≤6 o ≥8,7	

	Indicador: pH				
		Condición de	Límite de cambio de clase		
Tipo	Denominación tipo	Referencia	Bueno/ Moderado	Moderado/ Deficiente	
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal		7-10,5	≤7 o ≥10,5	

Tabla 71. Condiciones de referencia y límites de cambio de clase de estado ecológico para el pH en masas de agua lago naturales. (Fuente: RDSE)

	Indicador: Fósforo Total				
Tipo	Tine Demonstration time		Límite de cambio de clase (mg P/m³)		
Про	Denominación tipo	Referencia	Muy Bueno/ Bueno	Bueno/ Moderado	
L-T03	Alta montaña septentrional, poco profundo, aguas ácidas		12	18	
L-T06	Media montaña, profundo, aguas ácidas		10	18	
L-T21	Interior en cuenca de sedimentación, mineralización alta o muy alta, temporal		40	1000	

Tabla 71. Condiciones de referencia y límites de cambio de clase de estado ecológico para el Fósforo Total en masas de agua lago naturales. (Fuente: RDSE)

Para los contaminantes específicos, independientemente del tipo al que pertenezca la masa de agua lago, se utilizan como valores umbral del buen estado las normas de calidad ambiental establecidas para aguas superficiales continentales en el anexo V del RDSE (Normas de calidad ambiental para sustancias preferentes).

3.4.3. Indicadores hidromorfológicos

Los indicadores hidromorfológicos, recogidos por vez primera en la IPH, y que se vienen evaluando por parte de la CHD desde el año 2010, son los que figuran en la siguiente tabla, aunque hasta la fecha estos indicadores no se están utilizando para la evaluación del estado ecológico, por no disponer de condiciones específicas y límites de cambio de clase de los tipos.

Elemento de calidad	Indicador
Régimen hidrológico	Requerimiento hídrico ambiental Fluctuación del nivel
Condiciones morfológicas	Variación media de la profundidad Indicador de vegetación ribereña

Tabla 31. Indicadores para la evaluación de los elementos de calidad hidromorfológicos en lagos (Fuente: IPH)

La Guía de evaluación del estado incorpora los siguientes indicadores hidromorfológicos para lagos.

Elemento de calidad	Índices e Indicadores aplicables en el ciclo de planificación 2021-2027
Volúmenes e hidrodinámica del lago	Alteraciones del hidroperiodo y régimen de fluctuación del nivel de agua Alteraciones en el régimen de estratificación
Tiempo de permanencia	Alteraciones en al hidranoviado y rágimon de fluctuación del nivel de agua
Conexión con aguas subterráneas	Alteraciones en el hidroperiodo y régimen de fluctuación del nivel de agua
Variación de la profundidad del lago	Alteraciones en el estado y estructura de la cubeta

Elemento de calidad	Índices e Indicadores aplicables en el ciclo de planificación 2021-2027
Cantidad, estructura y sustrato del lecho del lago	
Estructura de la zona ribereña	Alteraciones en el estado y estructura de la zona ribereña

Tabla 32. Indicadores para la evaluación de los elementos de calidad hidromorfológicos en lagos (Fuente: Guía de evaluación del estado)

3.5. Evaluación del potencial ecológico en masas de agua artificiales y muy modificadas asimilables a lagos (embalses o lagos con fuerte regulación)

La evaluación del potencial ecológico de estas masas de agua se basa en los resultados obtenidos para una serie de elementos de calidad biológicos y físico-químicos, incluidos en el anexo II del RDSE, como se muestra en la siguiente tabla.

Grupo de elementos de calidad	Elemento de calidad	Indicador
Biológicos	Composición, abundancia y biomasa de fitoplancton	Índice de grupos algales (IGA) Porcentaje de cianobacterias (Cianobacterias %) Concentración de Clorofila a (mg/m³) Biovolumen total de fitoplancton (mm³/L)
Físico-químicos	Contaminantes específicos – vertidos en cantidades significativas	Contaminantes del anexo V del RDSE (sustancias preferentes)

Tabla 33. Indicadores para la evaluación del potencial ecológico en masas de agua artificiales y muy modificadas asimilables a lagos (embalses) de la DHD (Fuente: RDSE)

En función de los valores de los indicadores registrados en cada masa de agua, se obtiene una clasificación por separado para cada uno de los grupos de elementos de calidad. El resultado final de la valoración del potencial ecológico viene definido por el peor valor obtenido para cada elemento de calidad individualmente y, por tanto, por el valor obtenido para el conjunto de indicadores de los elementos de calidad de un mismo grupo (fitoplancton y contaminantes específicos).

3.5.1. Indicadores biológicos

Los indicadores para la evaluación de los elementos de calidad biológicos de los embalses son los incluidos en la tabla siguiente, obtenida del anexo II del RDSE.

Elemento de calidad	Indicador	Protocolo muestreo y laboratorio	Protocolo de cálculo de índices y métricas
Composición, abundancia y biomasa de fitoplancton	Índice de grupos algales (IGA) Porcentaje de cianobacterias (Cianobacterias %) Concentración de Clorofila a (mg/m³) Biovolumen total de fitoplancton (mm³/L)	M-LE-FP-2013	MFIT-2013. Versión 2

Tabla 34. Indicadores utilizados para la evaluación de los elementos de calidad biológicos en embalses (Fuente: RDSE)

La siguiente tabla muestra los valores de referencia (condiciones de máximo potencial ecológico) y los límites de cambio de clase de potencial ecológico para estos indicadores en masas de agua embalse, según el RDSE.

	Denominación	Indicador Unidades	Máximo	Límite de cambio de clase de estado (RCE)			
Tipo			potencial ecológico	Bueno o superior/ Moderado	Moderado/ Deficiente	Deficiente/ Malo	
	Monomíctico, silíceo de zonas	IGA		0,10	0,974	0,649	0,325
E-T01	húmedas, con temperatura media	% cianobacterias	%	0,00	0,908	0,607	0,303
L-101	anual menor de 15 °C, pertenecientes a ríos de cabecera y tramos altos	Clorofila a	mg/m³	2,00	0,211	0,14	0,07
	a nos de cabecera y tranios aitos	Biovolumen	mm³/L	0,36	0,189	0,126	0,063
		IGA		0,10	0,974	0,649	0,325
E-T03	Monomíctico, silíceo de zonas húmedas, pertenecientes a ríos de la	% cianobacterias		0,00	0,908	0,607	0,303
E-103	red principal	Clorofila a		2,00	0,211	0,14	0,07
		Biovolumen		0,36	0,189	0,126	0,063
		IGA		3,90	0,897	0,598	0,299
E-T05	Monomíctico, silíceo de zonas no	% cianobacterias		0,40	0,647	0,431	0,216
E-105	húmedas, pertenecientes a ríos de la red principal	Clorofila a		2,60	0,25	0,167	0,083
		Biovolumen		0,77	0,248	0,165	0,083
		IGA		0,61	0,982	0,655	0,327
F T07	Monomíctico, calcáreo de zonas húmedas, con temperatura media	% cianobacterias		0	0,715	0,48	0,24
E-T07	anual menor de 15°C, pertenecientes a	Clorofila a		2,6	0,433	0,287	0,143
	ríos de cabecera y tramos altos	Biovolumen		0,76	0,362	0,24	0,12
		IGA		0,61	0,982	0,655	0,327
F T11	Monomíctico, calcáreo de zonas no	% cianobacterias		0	0,715	0,48	0,24
E-T11	húmedas, pertenecientes a ríos de la red principal	Clorofila a		2,6	0,433	0,287	0,143
	·	Biovolumen		0,76	0,362	0,24	0,12
		IGA		1,5	0,929	0,619	0,31
F T42	Monomíctico, calcáreo de zonas no	% cianobacterias		0,1	0,686	0,457	0,229
E-T12	húmedas, pertenecientes a tramos bajos de los ríos principales	Clorofila a		2,4	0,195	0,13	0,065
	bajos de los rios principales	Biovolumen		0,63	0,175	0,117	0,058
		IGA		1,1	0,979	0,653	0,326
F T42	Dist/illian	% cianobacterias		0	0,931	0,621	0,31
E-T13	Dimíctico	Clorofila a		2,1	0,304	0,203	0,101
		Biovolumen		0,43	0,261	0,174	0,087

Tabla 35. Condiciones de referencia y límites de cambio de clase de potencial ecológico para los indicadores IGA, % cianobacterias, Clorofila a y Biovolumen en embalses (Fuente: RDSE)

Para la evaluación del elemento de calidad fitoplancton se tendrá en cuenta el procedimiento descrito en la Figura 6 y que está desarrollado con detalle en el apéndice VI a este anejo 8.2.

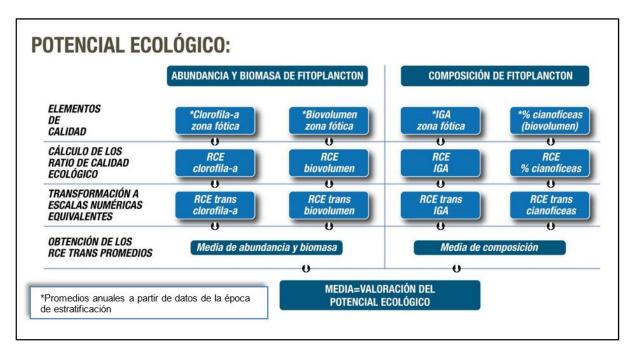


Figura 6. Esquema sintético del procedimiento a seguir para la valoración del potencial ecológico en masas de agua artificiales y muy modificadas (embalses)

Es importante reseñar que, para el cálculo del promedio final de RCEtrans, se requiere la evaluación de al menos una de las métricas relativas a la "biomasa y abundancia" y de una de las métricas de "composición".

La clasificación del potencial ecológico debido al fitoplancton se obtiene mediante la comparación del valor RCEtrans final, previamente ajustado a dos decimales, con los umbrales de RCE transformado que a continuación se indican:

POTENCIAL ECOLÓGICO	UMBRAL RCE TRANSFORMADO
Bueno o superior	≥0,60
Moderado	≥0,40
Deficiente	≥0,20
Malo	<0,20

Tabla 36. Clasificación del potencial ecológico de acuerdo al umbral RCE transformado

3.5.2. Indicadores físico-químicos

Las únicas métricas que, actualmente, intervienen en la valoración de su potencial ecológico son las relativas a contaminantes específicos, según lo incluido en el anexo V del RDSE.

Elemento de calidad	Indicador	Código del elemento
Contaminantes específicos	Contaminantes del anexo V del RDSE (sustancias preferentes)	QE3-3

Tabla 37. Indicadores para la evaluación de los elementos de calidad físico-químicos en embalses utilizados por la CHD

Al igual que en masas de agua río, con todos los datos anuales disponibles para cada indicador se calculará su valor medio por masa de agua. Dicho valor se debe cotejar con los límites de cambio de clase incluidos en el anexo V del RDSE.

Por lo tanto, el resultado global de la evaluación de los elementos de calidad físico-químicos para los embalses, viene definido exclusivamente por la clase de potencial ecológico obtenido de las sustancias preferentes.

3.5.3. Indicadores hidromorfológicos

Este elemento de calidad no se tiene en cuenta en la evaluación del potencial ecológico de las masas de agua artificiales y muy modificadas por embalses, ya que son masas fuertemente modificadas, esencialmente por razones hidromorfológicas.

3.6. Estado químico

El estado químico es una expresión del grado de cumplimiento de las normas de calidad ambiental, establecidas en la legislación europea y estatal, de las sustancias peligrosas presentes en una masa de agua superficial.

Tras haber establecido los criterios para la determinación del estado o potencial ecológico en las distintas categorías de masas de agua superficial presentes en la parte española de la demarcación hidrográfica del Duero, se abordan ahora los criterios para la evaluación del estado químico, que son comunes para todas las categorías de masas de agua superficial, ya sean ríos o lagos, tanto naturales como artificiales y muy modificadas.

No todas las masas de agua cuentan con valores de sustancias prioritarias y otros contaminantes (no sería viable económicamente ni racional técnicamente). Por lo tanto, se han seleccionado para el control de estas sustancias aquellas masas de agua en las que, en base a criterios objetivos, se considera probable la aparición de estos contaminantes. Para realizar esta selección, así como para determinar qué sustancias analizar en cada masa de agua, se han realizado diversos estudios de barrido o screening, partiendo de la información analítica disponible en la CHD relativa a la calidad de aguas superficiales, así como del estudio de presiones e impactos de la CHD (IMPRESS), que integra otras fuentes de información con las que también se ha trabajado en el pasado (inventario de emisiones PRTR, inventario de vertidos, capa de zonas regables de la cuenca del Duero, etc.).

En las masas de agua en las que no se ha realizado el control de sustancias prioritarias, porque no es esperable o probable la aparición de estos contaminantes en base al screening previo o en base a cualquier otro motivo o indicio, se presupone su inexistencia y, por lo tanto, su buen estado químico. Es muy importante refrescar periódicamente estos estudios de barrido o screening para ir adecuando las redes de control a la situación en cada momento.

El estado químico de las aguas superficiales se clasifica como bueno o como que no alcanza el bueno, según el esquema presentado a continuación.

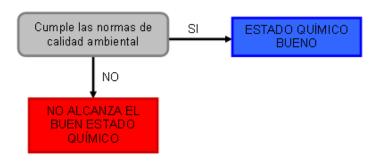


Figura 7. Esquema de clasificación del estado químico en masas de agua superficial

El buen estado químico se alcanza en una determinada masa de agua cuando esta cumple las normas de calidad ambiental establecidas en el anexo IV del RDSE, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, así como otras normas comunitarias pertinentes que fijen normas de calidad ambiental, si las hubiera.

De esta forma, una masa de agua se clasifica en buen estado químico si para cada una de las sustancias referidas se cumplen las condiciones siguientes, que quedan resumidas en la tabla siguiente:

- a) La media aritmética de las concentraciones medidas en cada punto de control representativo de la masa de agua en diferentes momentos a lo largo del año no excede el valor de la norma de calidad ambiental expresada como valor medio anual (NCA-MA).
- b) La concentración medida en cualquier punto de control representativo de la masa de agua a lo largo del año no excede el valor de la norma de calidad ambiental expresada como concentración máxima admisible (NCA-CMA).
- c) La concentración de las sustancias no aumenta en el sedimento ni en la biota.

Nº	SUSTANCIAS PRIORITARIAS Y OTROS CONTAMINANTES				NCA-MA Aguas superficiales continentales (μg/L)	NCA-CMA Aguas superficiales continentales (μg/L)	NCA Biota ⁴ (μg/Kg peso húmedo)
(1)	Alacloro		0,3	0,7			
(2)	Antraceno		0,1	0,4 [0,1]			
(3)	Atracina		0,6	2,0			
(4)	Benceno		10	50			
(5)	Difeniléteres bromados (Pentabromodifenileter; congéneres nº 28,47,99,100, 153 y 154)		0,0005	No aplicable [0,14]	[0,0085]		
	DUREZA (mg/l CaCO3)		NCA-MA	NCA-CMA			
(6)	(6) Cadmio y sus compuestos	CaCO ₃ < 50	≤ 0,08	≤ 0,45			
(6)		50 ≤ CaCO ₃ < 100	0,09	0,6			
		100 ≤ CaCO ₃ < 200	0,15	0,9			
		CaCO ₃ ≥ 200	0,25	1,5			

⁴ Salvo que se indique lo contrario, las NCA en biota se refieren a peces (fuente: RDSE)

Nº	SUSTANCIAS PRIORITARIAS Y OTROS CONTAMINANTES	NCA-MA Aguas superficiales continentales (µg/L)	NCA-CMA Aguas superficiales continentales (µg/L)	NCA Biota ⁴ (μg/Kg peso húmedo)
(6 bis)	Tetracloruro de carbono	12	No aplicable	
(7)	Cloroalcanos C ₁₀₋₁₃	0,4	1,4	
(8)	Clorfenvinfós	0,1	0,3	
(9)	Clorpirifós (Clorpirifós- etilo)	0,03	0,1	
(9 bis)	Plaguicidas de tipo ciclodieno: aldrín, dieldrín, endrín e isodrín	∑ = 0,01	No aplicable	
(0 tor)	DDT total	0,025	No aplicable	
(9 ter)	p,p´- DDT	0,01	No aplicable	
(10)	1,2 - Dicloroetano	10	No aplicable	
(11)	Diclorometano	20	No aplicable	
(12)	Ftalato de di(2-etilhexilo) (DEHP)	1,3	No aplicable	
(13)	Diurón	0,2	1,8	
(14)	Endosulfán	0,005	0,01	
(15)	Fluoranteno	0,1 [0,0063]	1 [0,12]	[30] ⁵
(16)	Hexaclorobenceno		0,05	10
(17)	Hexaclorobutadieno		0,6	55
(18)	Hexaclorociclohexano	0,02	0,04	
(19)	Isoproturón	0,3	1	
(20)	Plomo y sus compuestos	7,2 [1,2]	No aplicable	
(21)	Mercurio y sus compuestos		0,07	20
(22)	Naftaleno	2,4	No aplicable	
(23)	Níquel y sus compuestos	20 [4]	No aplicable [34]	
(24)	Nonilfenoles (4-Nonilfenol)	0,3	2	
(25)	Octilfenoles ((4-(1,1',3,3'-tetrametilbutil)-fenol))	0,1	No aplicable	
(26)	Pentaclorobenceno	0,007	No aplicable	
(27)	Pentaclorofenol	0,4	1	
	Hidrocarburos aromáticos policíclicos (HAP)	No aplicable	No aplicable	
	Benzo(a)pireno	0,05 [1,7·10-4]	0,1 [0,27]	[5]
(28)	Benzo(b)fluoranteno	5 000	No aplicable	
	Benzo(k)fluoranteno	∑ = 0,03	[0,17]	
	Benzo(g,h.i)perileno	F 0.000	No aplicable	
	Indeno(1,2,3,-cd)pireno	∑ = 0,002	[8,2·10-3]	
(29)	Simazina	1	4	
(29 bis)	Tetracloroetileno	10	No aplicable	
(29 ter)	Tricloroetileno	10	No aplicable	
(30)	Compuestos de Tributilestaño (catión de tributilestaño)	0,0002	0,0015	

⁵ Para las sustancias con los números 15 (fluoranteno) y 28 (HAP), la NCA de la biota se refiere a crustáceos y moluscos. A efectos de evaluar el estado químico, no resulta adecuado el seguimiento del fluoranteno y de los HAP en los peces.

Nº	SUSTANCIAS PRIORITARIAS Y OTROS CONTAMINANTES	NCA-MA Aguas superficiales continentales (μg/L)	NCA-CMA Aguas superficiales continentales (μg/L)	NCA Biota ⁴ (µg/Kg peso húmedo)
(31)	Triclorobencenos	0,4	No aplicable	
(32)	Triclorometano	2,5	No aplicable	
(33)	Trifluralina	0,03	No aplicable	
(34)	Dicofol	1,3 x 10 ⁻³	No aplicable	33
(35)	Ácido perfluorooctanosulfónico y sus derivados (PFOS)	6,5 x 10 ⁻⁴	36	9,1
(36)	Quinoxifeno	0,15	2,7	
(37)	Dioxinas y compuestos similares		No aplicable	Suma de PCDD+PCDF+PCB- DL 0,0065 µg/Kg TEQ ⁶
(38)	Aclonifeno	0,12	0,12	
(39)	Bifenox	0,012	0,04	
(40)	Cibutrina	0,0025	0,0016	
(41)	Cipermetrina	8 x 10 ⁻⁵	6 x 10 ⁻⁴	
(42)	Diclorvós	6 x 10 ⁻⁴	7 x 10 ⁻⁴	
(43)	Hexabromociclodecano (HBCDD)	0,0016	0,5	167
(44)	Heptacloro y epóxido de heptacloro	2 x 10 ⁻⁷	3 x 10 ⁻⁴	6,7 x 10 ⁻³
(45)	Terbutrina	0,065	0,34	

Tabla 38. Límites para establecer el buen estado químico (Fuente: Anexo IV del RDSE)

Si se da el caso de que la concentración (valor puntual o media anual) medida en una masa de agua para alguno de los contaminantes que intervienen en la evaluación del estado químico coincide exactamente con la norma de calidad ambiental (NCA-CMA o NCA-MA), se ha adoptado el criterio de considerarlo dentro de la clase superior, es decir, se ha considerado que cumple la NCA y, por tanto, el estado químico asociado a dicha masa de agua es bueno, aunque con un nivel de confianza medio.

Se debe tener en cuenta que todas las normas de calidad ambiental se refieren a concentraciones totales de los diferentes contaminantes en la muestra de agua, a excepción de los metales (cadmio, plomo, mercurio y níquel), en los que se refieren a concentraciones disueltas (obtenidas por filtración a través de membrana de 0,45 µm u otro pretratamiento equivalente).

Al igual que sucedía con el cobre y zinc, utilizados para la evaluación del estado y potencial ecológicos, las normas de calidad ambiental del parámetro "cadmio y sus compuestos" se aplican en función de la dureza del agua, obtenida a partir de los registros más recientes disponibles en la masa de agua. Por tanto, en aquellas masas de agua sin información sobre la dureza del agua, no se puede valorar el cumplimiento de las normas de calidad ambiental para el Cadmio (NPV).

⁶ Para la sustancia con el número 37 (dioxinas y compuestos similares), la NCA de la biota se refiere a los peces, los crustáceos y los moluscos, en consonancia con el punto 5.3 del anexo del Reglamento (UE) № 1259/2011 de la Comisión, de 2 de diciembre de 2011, por el que se modifica el Reglamento (CE) № 1881/2006 en lo relativo a los contenidos máximos de dioxinas, PCB similares a las dioxinas y PCB no similares a las dioxinas en los productos alimenticios (DO L 320 de 3.12.2011, p. 18).

Para el cálculo del valor medio anual (MA) de cada uno de los contaminantes del anexo V del RDSE, se debe tener en cuenta lo establecido en el apartado C.2 del anexo III del mismo texto legal; es decir, en el caso de que alguna de las medidas tomadas a lo largo del año sea inferior al límite de cuantificación (LC), se fija su valor en la mitad del LC a efectos del cálculo de la media anual, salvo si el parámetro es suma total de un grupo (hexaclorociclohexano, plaguicidas de tipo ciclodieno, DDT total y triclorobenceno), en cuyo caso los resultados inferiores al LC se consideran cero. En el apéndice VI del anejo 8.2 se describe pormenorizadamente la casuística en la aplicación de estas normas de calidad ambiental.

Cuando la NCA de una determinada sustancia sea inferior a la mitad del valor del límite de cuantificación de esa sustancia, y todos los resultados obtenidos para esa sustancia sean inferiores al límite de cuantificación, no es posible valorar el estado químico para esa sustancia (porque, en caso de hacerlo, se podrían producir falsos positivos de forma sistemática) y el estado químico de la masa de agua se obtiene a partir del resto de parámetros. Esta situación se da para el cadmio y sus compuestos, mercurio y sus compuestos, hexaclorobutadieno, triclorobenceno y, en algunos casos, para el naftaleno.

A fin de obtener un diagnóstico final de estado químico a nivel de masa de agua, por un lado, se compara cada una de las mediciones puntuales de los parámetros analizados en los diferentes puntos de muestreo con la NCA-CMA correspondiente y, por otro, se compara el valor medio anual de cada parámetro con la NCA-MA correspondiente. Si en esta comparación se detecta algún incumplimiento, el estado químico de esa masa de agua no alcanza el bueno. Si, por el contrario, todos los contaminantes analizados cumplen tanto su NCA-CMA como su NCA-MA, la masa de agua se encuentra en estado químico bueno.

4. CRITERIOS PARA LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUBTERRÁNEA

El estado de las masas de agua subterránea queda determinado por el peor valor de su estado cuantitativo y químico.

Su evaluación se ha realizado de acuerdo a la "Guía para la evaluación del estado de las aguas superficiales y subterráneas", publicada por el MITERD el 16/10/2020, y aprobada por la Instrucción del Secretario de Estado de Medio Ambiente por la que se establecen los requisitos mínimos para la evaluación del estado de las masas de agua en el tercer ciclo de planificación hidrológica (SEMA 14-10-2020).

Alcanzar un buen estado de las MSBT implica el cumplimiento de una serie de condiciones que se definen en las directivas DMA y DAS. Para evaluar si esas condiciones se cumplen, se han desarrollado una serie de Test de Evaluación para el estado cuantitativo y químico.

Existen cinco test químicos y cuatro cuantitativos con algunos elementos comunes a los dos tipos de evaluaciones. Cada uno de los test, considerando los elementos de clasificación que estén en riesgo, debe llevarse a cabo de modo independiente y los resultados combinados deben aportar una evaluación global del estado químico y cuantitativo de la MSBT.

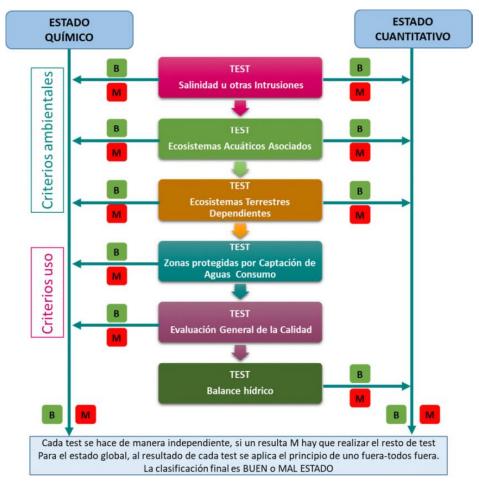


Figura 8. Test de evaluación del estado de las MSBT

4.1. Estado químico

El estado químico se define como una expresión general de la calidad de las aguas subterráneas que refleja el grado de cumplimiento de los objetivos medioambientales y del uso de las aguas subterráneas. Para el estado químico se distingue entre: buen estado y mal estado.

Una MSBT alcanza el buen estado químico cuando la composición química de la MSBT es tal que las concentraciones de contaminantes:

- No muestran los efectos de la salinización o de otras intrusiones.
- No producen la imposibilidad de lograr los objetivos medioambientales de los ecosistemas acuáticos asociados a la MSBT o un perjuicio significativo de los ecosistemas terrestres dependientes de la MSBT.
- No se excede ninguna norma de calidad (nitratos, plaguicidas) ni valor umbral en ninguno de los puntos de control, o bien, aunque se haya ha excedido el valor umbral o la norma de calidad en alguno de los puntos de control se ha demostrado mediante investigaciones adecuadas mediante los Test de Evaluación que:
 - las concentraciones de contaminantes no presentan un riesgo medioambiental significativo teniendo en cuenta, cuando proceda, el alcance de la MSBT que se ve afectada (en términos de volumen o superficie de MSBT)
 - o se cumplen las demás condiciones para un buen estado.

El procedimiento de evaluación del estado químico de una MSBT supone realizar de manera sucesiva aquellos de los 5 test para la evaluación del estado químico que sean aplicables, según la existencia de usos o receptores en la MSBT: en función de la existencia de un uso determinado (consumo, riego, industria), o de la presencia de un receptor (Intrusión, EAAS, mixtos EAAS/ETDAS), el test aplicará o no, excepto el Test de Evaluación General de la Calidad, que se realizará siempre.

TEST	NOMBRE	ELEMENTO DE CALIDAD	INDICADOR
1	Evaluación General de la Calidad	Deterioro significativo de los usos humanos Riesgo ambiental significativo causado por los contaminantes y normas de calidad de las aguas subterráneas	Valores Umbral: sustancias responsables del riesgo
2	Salinidad u Otras Intrusiones	Salinización u otras intrusiones.	Valores Umbral: Conductividad, Cloruros, Sulfatos. Tendencias significativas. Impacto por intrusión o extracciones.
3	MSPF Asociadas, Ecosistemas asociados a las aguas subterráneas (EAAS), Mixtos EAAS/ETDAS	Empeoramiento del estado de las MSPF o deterioro de los EAAS o Mixtos EAAS/ETDAS	Sustancias responsables de que la MSPF asociada o el ecosistema esté en mal estado químico o ecológico. Valores Umbral de sustancias responsables del mal estado. Ubicación de los puntos de muestreo de las aguas subterráneas. Carga contaminante transferida desde las aguas subterráneas al Ecosistema

TEST	NOMBRE	ELEMENTO DE CALIDAD	INDICADOR
4	Ecosistemas Terrestres Dependientes de las Aguas Subterráneas (ETDAS)	Daño significativo a ETDAS	Sustancias responsables de que el ETDAS esté en mal estado. Valores Umbral de sustancias responsables del mal estado. Ubicación puntos de muestreo de las Aguas Subterráneas.
5	Zonas Protegidas por Captación de Aguas de Consumo (ZPAC)	Deterioro de las aguas destinadas al consumo humano	Concentraciones o valores parámetros responsables del riesgo Parámetros químicos del real decreto de aguas de consumo humano. Niveles de Referencia (niveles de fondo) Tendencias significativas. Valores umbral

Tabla 39. Test de evaluación del estado químico de las MSBT

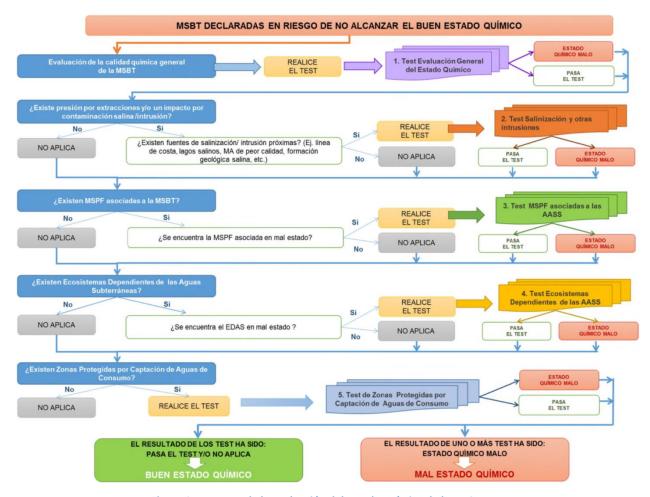


Figura 9. Esquema de la evaluación del estado químico de las MSBT

La legislación establece que se deberán establecer VU para aquellos contaminantes o sustancias responsables de que la MSBT haya sido clasificada como en riesgo, y se tendrán en cuenta, al menos las siguientes sustancias:

- 1. Sustancias de origen natural y antrópico:
 - a. Metales: arsénico, cadmio, plomo, mercurio.
 - b. Nutrientes: amonio, nitritos, fosfatos
 - c. Sales aniónicas: cloruros y sulfatos

- 2. Contaminantes sintéticos: tricloroetileno y tetracloroetileno
- 3. Indicador de intrusión salina: conductividad

Adicionalmente al riesgo establecido en el Anejo 7 de Presiones, se han incluido algunas masas en las que una superficie significativa de la masa (>20%), supera el 75% del valor establecido en el RD 140/2003 de aguas potables en alguna medida del periodo 2016 – 2020. De entre ellos se han considerado significativos los excesos sobre algunos parámetros clave y que son los que se han contribuido a la lista final de masas y parámetros en riesgo (Nitratos, Nitritos Cloruros, Sulfatos, Sodio, Potasio, Conductividad Eléctrica, Arsénico y Amonio).

Código	Nombre	Parámetro			
400001	La Tercia-Mampodre-Riaño	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso			
400002	La Babia - Luna	Coliformes, Dureza, Manganeso			
400003	Fuentes Carrionas - La Pernía	Dureza			
400004	Quintanilla-Peñahorada-Las Loras	Bicarbonatos, Coliformes, Dureza, Estreptococos			
400005	Terciario Detrítico del Tuerto- Esla	Coliformes, Dureza, Estreptococos, Hierro			
400006	Valdavia	Amonio, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Magnesio, Sulfatos			
400007	Terciario Detrítico del Esla-Cea	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Nitratos			
400008	Aluviales del Esla-Cea	Bicarbonatos, Calcio, <mark>Cloruros</mark> , Coliformes, Dureza, Estreptococos, Hierro, Manganeso, <mark>Sulfatos</mark>			
400009	Tierra de Campos	Bicarbonatos, Coliformes, Dureza, Estreptococos, Fluoruros, Hierro			
400010	Carrión	Bicarbonatos, Coliformes, Dureza, Nitratos, Nitritos			
400011	Aluvial del Órbigo	Bicarbonatos, Coliformes, Dureza, Hierro, Manganeso			
400012	La Maragatería	Amonio, Coliformes, Dureza, Estreptococos, Hierro			
400014	Villadiego	Bicarbonatos, Dureza, Magnesio, Manganeso, Nitratos			
400015	Raña del Órbigo	Amonio, Bicarbonatos, Calcio, Cloruros, Coliformes, Conductividad, Dureza, Estreptococos, Hierro, Magnesio, Manganeso, Nitratos, Nitritos, Potasio, Socialifatos			
400016	Castrojeriz	Bicarbonatos, Calcio, Cloruros, Dureza, Estreptococos, Fluoruros, Magnesio, Nitratos, Sulfatos			
400017	Burgos	Amonio, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Nitratos			
400018	Arlanzón-Río Lobos	Amonio, Bicarbonatos, Coliformes, Dureza, Estreptococos			
400019	Raña de la Bañeza	Hierro, Manganeso			
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Amonio, Bicarbonatos, Calcio, Coliformes, Conductividad, Dureza, Hierro, Magnesio, Manganeso, Sulfatos			
400021	Sierra de la Demanda	Manganeso			
400022	Sanabria	Arsénico, Coliformes, Dureza, Estreptococos, Hierro, Manganeso, Sílice			
400023	Vilardevós-Laza	Hierro, Manganeso, Sílice			
400024	Valle del Tera	Coliformes, Estreptococos, Hierro, Manganeso			
400025	Páramo de Astudillo	Bicarbonatos, Calcio, Coliformes, Dureza, Estreptococos, Hierro, Magnesio, Nitratos, Sulfatos, Alcalinidad			
400027	Sierras de Neila y Urbión	Bicarbonatos, Coliformes, Dureza, Estreptococos			
400028	Verín	Bicarbonatos, Hierro, Manganeso			
400029	Páramo del Esgueva y del Cerrato	Arsénico, Bicarbonatos, Carbonatos, Coliformes, Dureza, Estreptococos, Fluoruros, Hierro, Magnesio, Nitratos, Sílice			
400030	Aranda de Duero	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Nitratos, Alcalinidad			
400031	Villafáfila	Bicarbonatos, Cloruros, Coliformes, Dureza, Estreptococos, Fluoruros, Hierro, Nitratos, Potasio, Sodio, Alcalinidad			

Nombre	Parámetro			
Páramo de Torozos	Amonio, Bicarbonatos, Coliformes, Dureza, Estreptococos, Magnesio, Nitratos, Potasio			
Aliste	Bicarbonatos, Coliformes, Dureza, Estreptococos, Manganeso, Nitratos, Nitritos, Potasio			
Araviana	Bicarbonatos, Dureza			
Cabrejas-Soria	Bicarbonatos, Dureza, Manganeso			
Moncayo				
Cuenca de Almazán	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso			
Tordesillas-Toro	Arsénico, Bicarbonatos, Carbonatos, Coliformes, Dureza, Estreptococos, Hierro, Magnesio, Manganeso, Nitratos, Alcalinidad			
Aluvial del Duero: Aranda- Tordesillas	Amonio, Bicarbonatos, Calcio, Cloruros, Coliformes, Dureza, Estreptococos, Hierro, Magnesio, Manganeso, Nitratos, Nitritos, Potasio, Sulfatos			
Sayago	Bicarbonatos, Coliformes, Estreptococos, Hierro, Manganeso, Sílice			
Aluvial del Duero: Tordesillas- Zamora	Arsénico, Bicarbonatos, Calcio, Cloruros, Conductividad, Dureza, Hierro, Magnesio, Manganeso, Nitratos, Nitritos, Potasio, Sodio, Sulfatos, Alcalinidad			
interfluvio Riaza-Duero	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Nitritos			
Páramo de Cuéllar	Bicarbonatos, Carbonatos, Coliformes, Dureza, Estreptococos, Hierro, Magnesio, Manganeso, Nitratos, Nitritos, Sílice, Alcalinidad			
Páramo de Corcos	Amonio, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Mangane Nitratos			
Los Arenales - Tierra de Pinares	Amonio, Arsénico, Bicarbonatos, Carbonatos, Conductividad, Dureza, Hierro, Magnesio, Manganeso, Nitratos, Nitritos, Sodio, Sulfatos			
Sepúlveda	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro			
Los Arenales - Tierras de Medina y La Moraña	Amonio, Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso			
Los Arenales - Tierra del Vino	Amonio, Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso			
Tierras de Ayllón y Riaza	Arsénico, Dureza, Estreptococos, Hierro, Nitratos			
Tierras de Caracena - Berlanga	Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Nitratos			
Páramo de Escalote	Bicarbonatos, Carbonatos, Dureza, Hierro, Manganeso, Nitratos			
Salamanca	Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso, Nitratos, Sílice			
Vitigudino	Arsénico, Coliformes, Dureza, Estreptococos, Hierro, Manganeso, Sílice			
Guadarrama-Somosierra	Coliformes, Estreptococos			
Curso medio del Eresma, Pirón y Cega	Amonio, Arsénico, Bicarbonatos, Carbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso, Nitratos, Nitritos, Sílice, Alcalinidad			
Prádena	Bicarbonatos, Coliformes, Dureza, Estreptococos, Potasio			
Segovia	Bicarbonatos, Coliformes, Dureza, Estreptococos, Magnesio, Nitratos			
Campo Charro	Bicarbonatos, Dureza, Fluoruros, Hierro			
La Fuente de San Esteban	Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Magnesio, Nitratos, Sílice			
Gredos	Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Hierro, Manganeso			
Sierras de Ávila y la Paramera	Calcio, Cloruros, Coliformes, Dureza, Estreptococos, Magnesio, Manganeso			
Ciudad Rodrigo	Arsénico, Bicarbonatos, Coliformes, Estreptococos, Fluoruros, Hierro, Manganeso, Sílice			
Valle Amblés	Arsénico, Hierro, Manganeso			
Las Batuecas	Coliformes, Estreptococos, Hierro, Manganeso, Sílice			
Valdecorneja	Arsénico, Bicarbonatos, Coliformes, Dureza, Estreptococos, Fluoruros, Hierro			
Terciario Detrítico Bajo Los Páramos	Amonio, Arsénico, Bicarbonatos, Calcio, Cloruros, Conductividad, Dureza, Hierro, Magnesio, Manganeso, Sodio, Sulfatos en MSBT (en rojo) y masas sin riesgo establecido (verde)			
	Aliste Araviana Cabrejas-Soria Moncayo Cuenca de Almazán Tordesillas-Toro Aluvial del Duero: Aranda- Tordesillas Sayago Aluvial del Duero: Tordesillas- Zamora interfluvio Riaza-Duero Páramo de Cuéllar Páramo de Corcos Los Arenales - Tierra de Pinares Sepúlveda Los Arenales - Tierra de Medina y La Moraña Los Arenales - Tierra del Vino Tierras de Ayllón y Riaza Tierras de Caracena - Berlanga Páramo de Escalote Salamanca Vitigudino Guadarrama-Somosierra Curso medio del Eresma, Pirón y Cega Prádena Segovia Campo Charro La Fuente de San Esteban Gredos Sierras de Ávila y la Paramera Ciudad Rodrigo Valle Amblés Las Batuecas Valdecorneja Terciario Detrítico Bajo Los			

Tabla 40. Riesgos en MSBT (en rojo) y masas sin riesgo establecido (verde)

Este riesgo puede considerarse muy exigente ya que los excesos de sales no relacionadas con sobreexplotación suelen deberse a una composición natural del agua de esa zona y no estar relacionadas antrópicamente con ella. Este problema debería solventarse al calcular un VU que permitiera unas concentraciones elevadas de estos parámetros.

La determinación de los valores umbral se ha redefinido en este tercer ciclo de planificación en base a los condicionantes descritos en la "Guía para la evaluación del estado de las aguas superficiales y subterráneas", y debe realizarse para las masas definidas en riesgo y para los parámetros por los que se declaran en riesgo de no alcanzar los objetivos ambientales. Para la actualización de estos valores umbral se han recalculado también los Niveles de Referencia (NR) o niveles de fondo.

Para la definición de estos parámetros en la demarcación del Duero se han tenido en cuenta las siguientes consideraciones:

- Los datos utilizados provienen de los muestreos efectuados por el IGME desde los años 70 hasta el año 2001, de los datos recopilados por las Redes Básicas y Nitratos (2000 2006) y de los resultados analíticos de las redes de control del estado de las masas de aguas subterránea de la CHD (2006 2020). Accesoriamente se han incluido muestreos no contenidos en las redes anteriores pero que fueron recopilados por el MARM en el año 2009 en la Base de datos de Calidad De Aguas Subterráneas. En ella se recogen los datos de todas las campañas de las distintas redes históricas que han operado en el territorio de la demarcación en el entorno del trabajo de Intercambio de Información entre las Demarcaciones Hidrográficas y la Subdirección General.
- El establecimiento del Nivel de Referencia (NR), definido como la concentración de una sustancia en las aguas subterráneas en condiciones naturales sin estar sometidas a alteraciones antropogénicas o sometidas a alteraciones mínimas, debe ser sometida a un filtrado de los datos disponibles enfocados a intentar conseguir estas condiciones prístinas, se han eliminado. Para ello, no se han considerado las campañas en las que se compruebe alguno de los siguientes supuestos:
 - Nitratos > 10mg/l (Salvo para las masas 400014, 400025, 400034 y 400044 que se ha aumentado hasta 15 mg/l por la poca cantidad de muestreos disponibles)
 - Cloruros > 200 mg/l (Salvo para las masas 400031 y 400067 con datos históricos de aguas salinas)
 - NaCl > 1.000 mg/l (Salvo para las masas 400031 y 400067 con datos históricos de aguas salinas)
 - Error de balance iónico > 10%
 - No se han determinado filtrados por compuestos de pesticidas o similares por la poca afección identificada en la cuenca

El volumen de datos disponible para determinar el valor umbral en algunas masas después de aplicar los filtros anteriores se ve muy reducido y los resultados preliminares de estos cálculos no se ajustaban a los valores naturales esperables, considerándose que las estaciones históricas no recogían unas concentraciones coherentes con las condiciones inalteradas de la hidrogeología de la zona. Por esa razón se ha necesitado eliminar los filtros para conseguir un volumen de datos aceptable para

calcular el valor umbral en cada caso. Los datos finales se enmarcan en el contexto hidrogeológico de la zona y son coherentes, a juicio de experto, con las condiciones esperables para esas masas y aparecen marcados en amarillo en la Tabla 42. Valores Umbral.

El resultado de este filtrado permite utilizar 43.202 muestras históricas para los parámetros seleccionados

El cálculo de los NR se estima en el percentil 97,7 de los datos para un número de muestras >60 y del percentil 90 si el número de muestras es <60

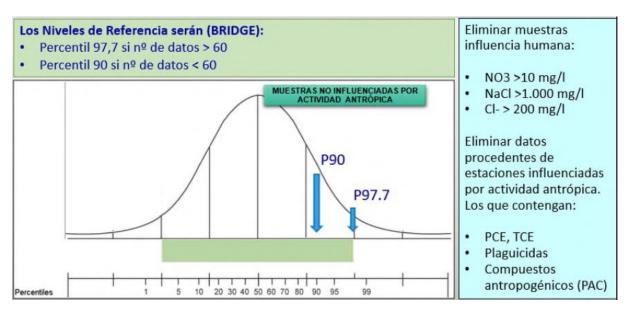


Figura 10. Procedimiento general para el establecimiento de los Niveles de Referencia (niveles de fondo)

• El valor criterio, definido como la concentración de un contaminante o valor de un indicador, que puede ser cualquier norma de referencia o valor escogido para la protección de los diferentes usos y receptores existentes en la MSBT ha sido definido por el RD 140/2003 de aguas potables, y en caso de no tenerse un valor para algún parámetro en cuestión, se ha utilizado el reflejado en el RD 1423/1982 por el que se aprueba la Reglamentación Técnicosanitaria para el abastecimiento y control de calidad de las aguas potables de consumo público.

El uso de estos valores permite su aplicación en los diferentes usos como el abastecimiento, la industria o el regadío, siendo el más restrictivo de los que se ofrecen.

La determinación de los valores criterio para los Ecosistemas Terrestres Dependientes o los Ecosistemas Acuáticos Asociados exigen una determinación de Factores de Dilución.

La DAS, en su artículo 3.1.b) establece que "se deberán considerar los contaminantes, grupos de contaminantes e indicadores de contaminación que, dentro del territorio de un Estado miembro, se hayan identificado como elementos que contribuyen a la caracterización de masas o grupos de masas de agua subterránea en riesgo, teniendo en cuenta como mínimo la lista que figura en la parte B del Anexo II".

La lista de sustancias del anexo II.B se enumera a continuación:

- Sustancias, o iones, o indicadores, que pueden estar presentes de modo natural o como resultado de las actividades humanas: As, Cd, Pb, Hg, NH4, Cl-, SO4, nitritos y fosfatos
- Sustancias sintéticas artificiales: tricloroetileno, tetracloroetileno
- Parámetros indicativos de salinización o de otras intrusiones: conductividad o Cl-, SO4

Los parámetros finalmente establecidos para el análisis son los siguientes:

Código	Nombre		
Alcalinidad	Fluoruros		
Amonio	Fosfatos		
Antimonio	Hierro		
Arsénico	Magnesio		
Bario	Manganeso		
Benceno	Mercurio		
Berilio	Nitritos		
Bicarbonatos	рН		
Cadmio	pH de campo		
Calcio	Plomo total		
Carbonatos	Potasio		
Cianuro	Sodio		
Cloruros	Sulfatos		
Cobre total	Tetracloroetileno		
Coliformes fecales y totales	Tricloroetileno		
Conductividad	Nitratos		

Tabla 41 Parámetros análisis de estado

Se han definido los VU para cada masa en riesgo y por los parámetros que así las sitúan, haciéndose una comparación entre los NR calculados para cada masa de agua y el VC correspondiente, pudiendo darse dos situaciones:

- Caso 1: El NR es menor que el VC. En ese caso, el VU estará situado entre el NR y el VC, proponiéndose como norma general que éste se encuentre en el punto medio entre ambos.
- Caso 2: El NR es mayor que el VC, más un margen adicional de superación del 10%.

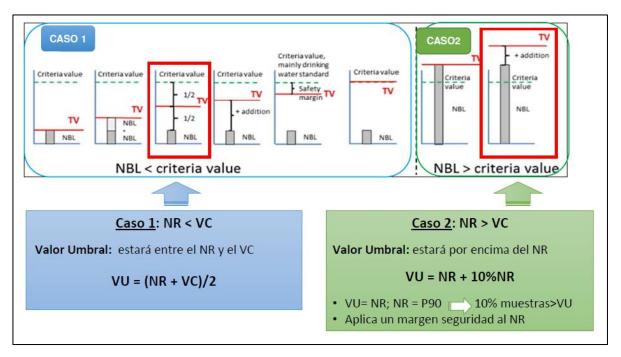


Figura 11. Criterio para el cálculo de los Valores Umbral

Para cada una de las masas se ha realizado una ficha explicativa con la determinación del valor umbral incluidas en el apéndice V.

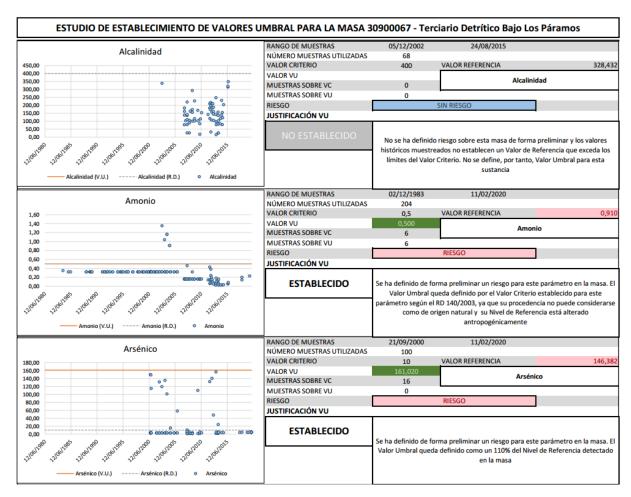


Figura 12. Extracto de ficha para la determinación de los VU.

EL resultado final del establecimiento de los Valores Umbral y el método de su definición es el siguiente.

Cod. MSBT	Nombre MSBT	PARAM	UNIDADES	NR	VC	VU	MÉTODO
400006	Valdavia	Amonio	mg/l	0,32	0,5	0,5	VC
400012	La Maragatería	Amonio	mg/l	0,17	0,5	0,5	VC
400015	Raña del Órbigo	Amonio	mg/l	4,41	0,5	0,5	VC
400017	Burgos	Amonio	mg/l	0,32	0,5	0,5	VC
400018	Arlanzón-Río Lobos	Amonio	mg/l	0,33	0,5	0,5	VC
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Amonio	mg/l	0,31	0,5	0,5	VC
400032	Páramo de Torozos	Amonio	mg/l	0,16	0,5	0,5	VC
400039	Aluvial del Duero: Aranda- Tordesillas	Amonio	mg/l	2,37	0,5	0,5	VC
400044	Páramo de Corcos	Amonio	mg/l	0,37	0,5	0,5	VC
400045	Los Arenales - Tierra de Pinares	Amonio	mg/l	1,36	0,5	0,5	VC
400047	Los Arenales - Tierras de Medina y La Moraña	Amonio	mg/l	2	0,5	0,5	vc
400048	Los Arenales - Tierra del Vino	Amonio	mg/l	0,34	0,5	0,5	VC
400055	Curso medio del Eresma, Pirón y Cega	Amonio	mg/l	1,84	0,5	0,5	vc
400067	Terciario Detrítico Bajo Los Páramos	Amonio	mg/l	0,91	0,5	0,5	VC
400022	Sanabria	Arsénico	μg/l	10,42	10	11,46	VU = 110% NR
400029	Páramo del Esgueva y del Cerrato	Arsénico	μg/l	8	10	9	VU = NR + (VC - NR) / 2
400038	Tordesillas - Toro	Arsénico	μg/l	4	10	7	VU = NR + (VC - NR) / 2
400041	Aluvial del Duero: Tordesillas- Zamora	Arsénico	μg/l	11,34	10	12,47	VU = 110% NR
400045	Los Arenales - Tierra de Pinares	Arsénico	μg/l	166,86	10	183,54	VU = 110% NR
400047	Los Arenales - Tierras de Medina y La Moraña	Arsénico	μg/l	86	10	94,6	VU = 110% NR
400048	Los Arenales - Tierra del Vino	Arsénico	μg/l	21,96	10	24,16	VU = 110% NR
400049	Tierras de Ayllón y Riaza	Arsénico	μg/l	11	10	12,1	VU = 110% NR
400052	Salamanca	Arsénico	μg/l	8,38	10	9,19	VU = NR + (VC - NR) / 2
400053	Vitigudino	Arsénico	μg/l	135,98	10	149,58	VU = 110% NR
400055	Curso medio del Eresma, Pirón y Cega	Arsénico	μg/l	3,76	10	6,88	VU = NR + (VC - NR) / 2
400059	La Fuente de San Esteban	Arsénico	μg/l	19,88	10	21,87	VU = 110% NR
400060	Gredos	Arsénico	μg/l	11	10	12,1	VU = 110% NR
400063	Ciudad Rodrigo	Arsénico	μg/l	474,6	10	273	VU = 110% NR
400064	Valle Amblés	Arsénico	μg/l	9,56	10	9,78	VU = NR + (VC - NR) / 2
400066	Valdecorneja	Arsénico	μg/l	22,98	10	25,28	VU = 110% NR
400067	Terciario Detrítico Bajo Los Páramos	Arsénico	μg/l	146,38	10	161,02	VU = 110% NR
400008	Aluviales del Esla-Cea	Cloruros	mg/l	43	250	146	VU = NR + (VC - NR) / 2
400015	Raña del Órbigo	Cloruros	mg/l	71	250	161	VU = NR + (VC - NR) / 2
400016	Castrojeriz	Cloruros	mg/l	20	250	135	VU = NR + (VC - NR) / 2
400031	Villafáfila	Cloruros	mg/l	620	250	682	VU = 110% NR

Cod. MSBT	Nombre MSBT	PARAM	UNIDADES	NR	VC	VU	MÉTODO
400039	Aluvial del Duero: Aranda- Tordesillas	Cloruros	mg/l	52	250	151	VU = NR + (VC - NR) / 2
400041	Aluvial del Duero: Tordesillas- Zamora	Cloruros	mg/l	175	250	212	VU = NR + (VC - NR) / 2
400061	Sierras de Ávila y la Paramera	Cloruros	mg/l	101	250	176	VU = NR + (VC - NR) / 2
400067	Terciario Detrítico Bajo Los Páramos	Cloruros	mg/l	431	250	474	VU = 110% NR
400015	Raña del Órbigo	Conduct	μS/cm	772	2500	1.636	VU = NR + (VC - NR) / 2
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Conduct	μS/cm	1.119	2500	1.809	VU = NR + (VC - NR) / 2
400041	Aluvial del Duero: Tordesillas- Zamora	Conduct	μS/cm	1.285	2500	1.893	VU = NR + (VC - NR) / 2
400045	Los Arenales - Tierra de Pinares	Conduct	μS/cm	2.206	2500	2.353	VU = NR + (VC - NR) / 2
400067	Terciario Detrítico Bajo Los Páramos	Conduct	μS/cm	3.034	2500	3.338	VU = 110% NR
400009	Tierra de Campos	Fluoruros	mg/l	2,04	1,5	2,25	VU = 110% NR
400016	Castrojeriz	Fluoruros	mg/l	1,39	1,5	1,46	VU = NR + (VC - NR) / 2
400029	Páramo del Esgueva y del Cerrato	Fluoruros	mg/l	1,39	1,5	1,44	VU = NR + (VC - NR) / 2
400031	Villafáfila	Fluoruros	mg/l	2,46	1,5	2,7	VU = 110% NR
400058	Campo Charro	Fluoruros	mg/l	1,55	1,5	1,7	VU = 110% NR
400063	Ciudad Rodrigo	Fluoruros	mg/l	2,52	2,5	2,77	VU = 110% NR
400066	Valdecorneja	Fluoruros	mg/l	1,16	1,5	1,33	VU = NR + (VC - NR) / 2
400010	Carrión	Nitritos	mg/l	0,05	0,5	0,5	VC
400015	Raña del Órbigo	Nitritos	mg/l	0,23	0,5	0,5	VC
400033	Aliste	Nitritos	mg/l	0,05	0,5	0,5	VC
400039	Aluvial del Duero: Aranda- Tordesillas	Nitritos	mg/l	0,17	0,5	0,5	VC
400041	Aluvial del Duero: Tordesillas- Zamora	Nitritos	mg/l	0,11	0,5	0,5	VC
400042	interfluvio Riaza-Duero	Nitritos	mg/l	0,05	0,5	0,5	VC
400043	Páramo de Cuéllar	Nitritos	mg/l	0,57	0,5	0,5	VC
400045	Los Arenales - Tierra de Pinares	Nitritos	mg/l	1,8	0,5	0,5	VC
400055	Curso medio del Eresma, Pirón y Cega	Nitritos	mg/l	2,98	0,5	0,5	VC
400015	Raña del Órbigo	Potasio	mg/l	1	20	11	VU = NR + (VC - NR) / 2
400031	Villafáfila	Potasio	mg/l	25	20	28	VU = 110% NR
400032	Páramo de Torozos	Potasio	mg/l	7	20	14	VU = NR + (VC - NR) / 2
400033	Aliste	Potasio	mg/l	3	20	11	VU = NR + (VC - NR) / 2
400039	Aluvial del Duero: Aranda- Tordesillas	Potasio	mg/l	4	20	12	VU = NR + (VC - NR) / 2
400041	Aluvial del Duero: Tordesillas- Zamora	Potasio	mg/l	10	20	15	VU = NR + (VC - NR) / 2
400056	Prádena	Potasio	mg/l	6	20	13	VU = NR + (VC - NR) / 2
400015	Raña del Órbigo	Sodio	mg/l	44	200	122	VU = NR + (VC - NR) / 2
400031	Villafáfila	Sodio	mg/l	559	200	614	VU = 110% NR
400041	Aluvial del Duero: Tordesillas- Zamora	Sodio	mg/l	222	200	244	VU = 110% NR
400045	Los Arenales - Tierra de Pinares	Sodio	mg/l	401	200	441	VU = 110% NR

Cod. MSBT	Nombre MSBT	PARAM	UNIDADES	NR	VC	VU	MÉTODO
400067	Terciario Detrítico Bajo Los Páramos	Sodio	mg/l	522	200	574	VU = 110% NR
400006	Valdavia	Sulfatos	mg/l	322	250	355	VU = 110% NR
400008	Aluviales del Esla-Cea	Sulfatos	mg/l	20	250	135	VU = NR + (VC - NR) / 2
400015	Raña del Órbigo	Sulfatos	mg/l	140	250	195	VU = NR + (VC - NR) / 2
400016	Castrojeriz	Sulfatos	mg/l	517	250	569	VU = 110% NR
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Sulfatos	mg/l	605	250	665	VU = 110% NR
400025	Páramo de Astudillo	Sulfatos	mg/l	748	250	823	VU = 110% NR
400039	Aluvial del Duero: Aranda- Tordesillas	Sulfatos	mg/l	1.660	250	1.826	VU = 110% NR
400041	Aluvial del Duero: Tordesillas- Zamora	Sulfatos	mg/l	371	250	409	VU = 110% NR
400045	Los Arenales - Tierra de Pinares	Sulfatos	mg/l	864	250	950	VU = 110% NR
400067	Terciario Detrítico Bajo Los Páramos	Sulfatos	mg/l	1.918	250	2.110	VU = 110% NR

Tabla 42. Valores Umbral (en amarillo valores umbral calculados sin filtrado de datos)

El establecimiento de estos valores umbral es necesario para contrastar la concentración natural de un parámetro con la actual y así caracterizar la posible afección humana sobre las masas de agua.

En el apartado 6 (Resultados de la valoración del estado de las masas de agua subterránea) se muestra la información detallada de los criterios seguidos para la evaluación del estado químico de las aguas subterráneas de la demarcación.

4.2. Estado cuantitativo

El estado cuantitativo se define como una expresión del grado en que afectan a una MSBT las extracciones directas e indirectas. Para el estado cuantitativo se distingue entre: buen estado y mal estado.

La metodología de evaluación se ha desarrollado siguiendo los principios descritos en la Guía N.º 18 de la Estrategia Común de Implementación de la DMA. En esta guía se propone evaluar el estado cuantitativo a partir de los elementos que componen la definición de buen estado de la DMA. La evaluación de estado cuantitativo de las MSBT se divide en cuatro test, que abarcan, cada uno de ellos, los diferentes criterios establecidos por la definición de buen estado cuantitativo de las masas de agua subterránea.

Una MSBT alcanza el buen estado cuantitativo cuando:

- El recurso disponible de aguas subterráneas no es superado por la tasa media anual de extracción a largo plazo.
- El nivel piezométrico y el flujo es suficiente para que las aguas superficiales y ecosistemas acuáticos asociados cumplan los objetivos ambientales o no experimenten un deterioro del estado; y para que los ecosistemas terrestres dependientes no sufran un perjuicio significativo
- Las alteraciones antrópicas de la dirección del flujo derivadas del cambio de nivel no

provocan salinización u otras intrusiones

El estado cuantitativo es el resultado de la evaluación de los siguientes 4 test:

TEST	NOMBRE	ELEMENTO DE CALIDAD	INDICADOR
1	Balance hídrico	El recurso disponible no es superado por la tasa media anual de extracción a largo plazo	 Extracciones Recursos disponibles Tendencia piezométrica a largo plazo Descarga de manantiales
2	MSPF asociadas a las aguas subterráneas	No se incumplen los OMA, ni hay un deterioro significativo del estado de las MSPF asociadas y EAAS	Cumplimiento de caudales ecológicos mínimos Impacto de las extracciones de aguas subterráneas (tendencia piezométrica a largo plazo, descarga de manantiales, índice de explotación)
3	Ecosistemas Dependientes de las Aguas Subterráneas (EDAS)	No hay daño significativo a los EDAS	 Cumplimiento de las necesidades ambientales de los EDAS Impacto de las extracciones de aguas subterráneas (tendencia piezométrica a largo plazo, descarga de manantiales, índice de explotación)
4	Salinización u otras intrusiones	No existe salinización u otras intrusiones.	 Valores umbral: Conductividad, Cloruros, Sulfatos Tendencias significativas Impacto por intrusión o extracciones (tendencia piezométrica a largo plazo)

Tabla 43. Test de evaluación del estado cuantitativo de las MSBT

Según establece la normativa, cada uno de estos test, debe de llevarse a cabo de forma independiente y los resultados combinados deben aportar una evaluación global del estado cuantitativo de la MSBT:

- El mal estado cuantitativo se obtendrá: cuando la MSBT incumpla cualquiera de los test.
- El buen estado cuantitativo se obtendrá: cuando la MSBT pase los cuatro test.

El primero de estos test, el de balance hídrico, tiene un carácter general. Mientras que los test restantes, se aplicarán en función de las características medioambientales de cada MSBT.

Siempre que no se haya podido contestar alguna de las preguntas planteadas en los test debido a la falta de información y, por lo tanto, no se haya podido finalizar el test correctamente, se considerará que el resultado es el buen estado cuantitativo de la MSBT para el test en cuestión.

El proceso de evaluación de estado no debe detenerse, aunque el resultado de alguno de los test indique el mal estado de la MSBT.

En el apartado 6 (Resultados de la valoración del estado de las masas de agua subterránea) se muestra la información detallada de los criterios seguidos para la evaluación del estado cuantitativo de las aguas subterráneas.

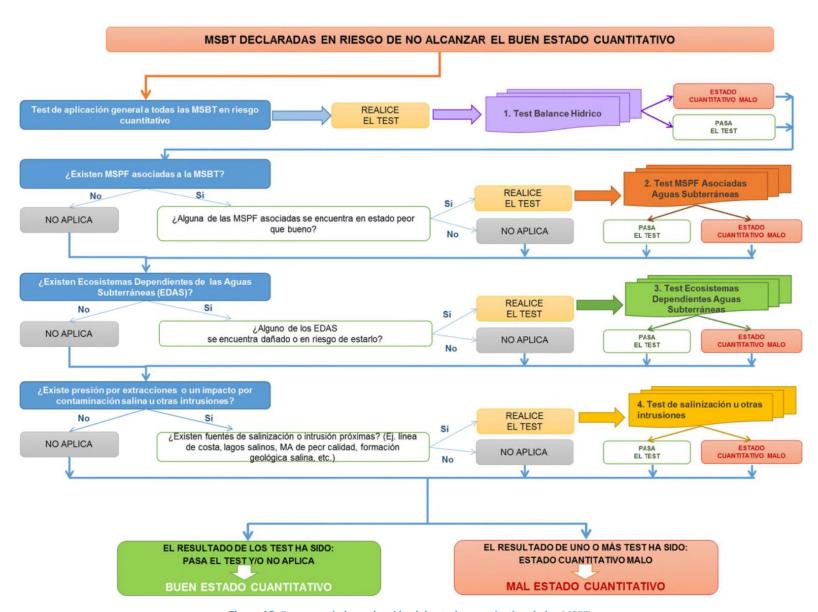


Figura 13. Esquema de la evaluación del estado cuantitativo de las MSBT

5. RESULTADOS DE LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUPERFICIAL

En el presente apartado se ofrecen los resultados obtenidos para las masas de agua superficial en la parte española de la demarcación hidrográfica del Duero para estado ecológico, estado químico y estado general, tomando como referencia el año 2019.

Los datos aquí presentados deben interpretarse con cautela y, en todo caso, considerarse como aproximaciones provisionales, ya que todavía no ha sido posible implementar todo el conjunto de indicadores requerido para realizar una evaluación del estado o potencial ecológico integral y fiable, y algunos de los que se han implementado aún no han sido completamente testados, al menos en las masas de agua de la cuenca del Duero. En cuanto al estado químico, puesto que no es viable económicamente realizar un seguimiento de todas las sustancias prioritarias y otros contaminantes en todas las masas de agua, el estudio se basa en el análisis de presiones, realizándose un "screening" previo, presuponiendo su inexistencia si no hay presiones potencialmente significativas y, por lo tanto, su buen estado químico.

Para la presentación de estos resultados se han tenido en cuenta las especificaciones recogidas en el punto 5.1.5 de la IPH. En el Apéndice II – Valoración del estado de las masas de agua superficial de este anejo, se puede encontrar información más detallada sobre estos resultados.

La evaluación del estado realizada para cada masa de agua se puede consultar a través del sistema de información Mírame-IDEDuero.

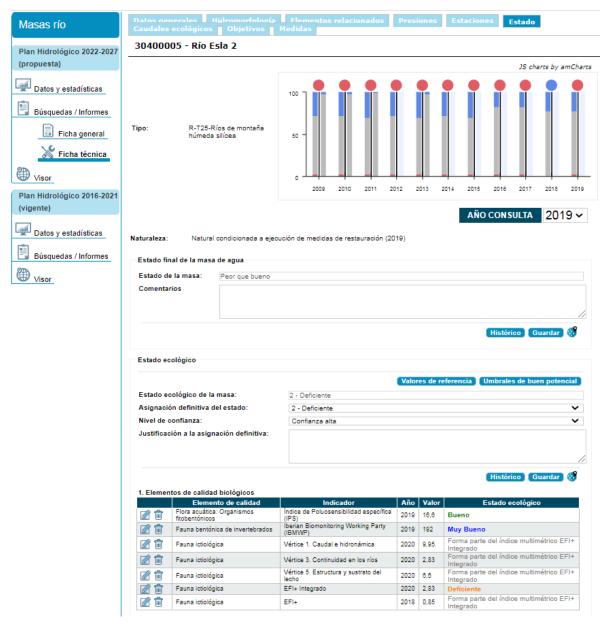


Figura 14. Información sobre el estado de las masas de agua accesible a través de Mírame-IDEDuero

5.1. Estado o potencial ecológico

A continuación se ofrecen los resultados de estado ecológico en ríos y en lagos naturales, y de potencial ecológico en masas de agua artificiales y muy modificadas asimilables a ríos y en embalses, tanto en forma de mapa como en forma de tabla.

Se completa la foto, para las masas de agua río, con el resultado del análisis de afección hidromorfológica de las masas de agua, según lo expuesto en el apartado 3.2.3.

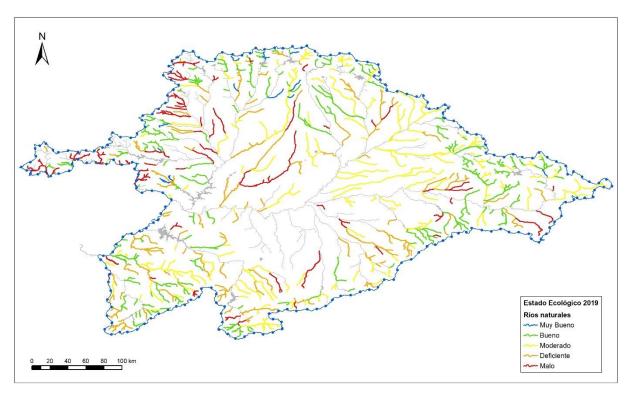


Figura 15. Resultados de estado ecológico en ríos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Muy Bueno	13	2,83%
Bueno	151	32,90%
Moderado	138	30,07%
Deficiente	96	20,92%
Malo	61	13,29%
TOTAL	459	100,00%

Tabla 44. Resultados de estado ecológico en ríos naturales

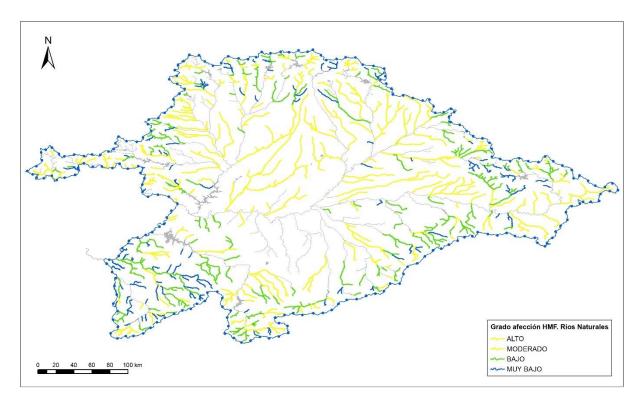


Figura 16. Resultados del grado de afección hidromorfológica en ríos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Muy bajo	95	20,70%
Bajo	140	30,50%
Moderado	182	39,65%
Alto	42	9,15%
TOTAL	459	100,00%

Tabla 45. Resultados del grado de afección hidromorfológica en ríos naturales

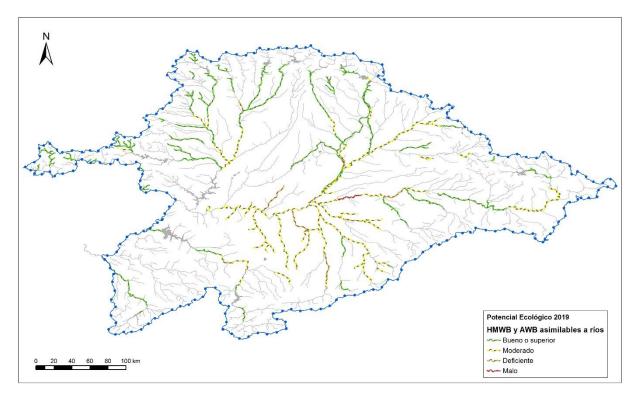


Figura 17. Resultados de potencial ecológico en AWB y HMWB asimilables a ríos (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno o superior	96	51,34%
Moderado	77	40,18%
Deficiente	12	6,42%
Malo	2	1,07%
TOTAL	187	100,00%

Tabla 46. Resultados de potencial ecológico en AWB y HMWB modificadas asimilables a ríos

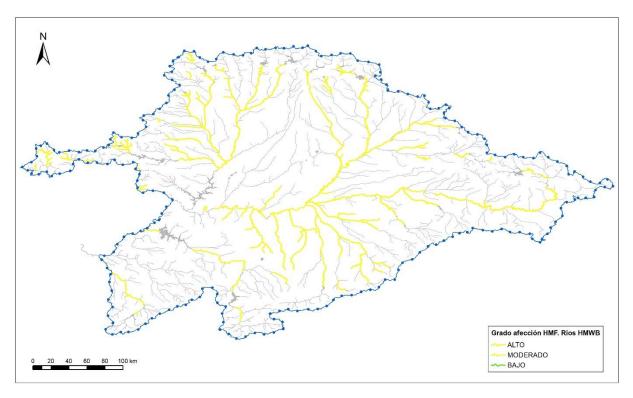


Figura 18. Resultados del grado de afección hidromorfológica en ríos HMWB (Fuente: CHD)

Clase	Nº masas de agua (1)	% del total
Muy bajo	0	0,00%
Bajo	0	0,00%
Moderado	29	15,76%
Alto	155	84,24%
TOTAL	184	100,00%

(1) No aplica los los 3 rios AWB (canales)

Tabla 47. Resultados del grado de afección hidromorfológica en ríos HMWB

El 100% de estas masas presenta una afección hidromorfológica moderada o alta, lo cual es coherente ya que dicha afección es la causa de su designación como masas muy modificadas.

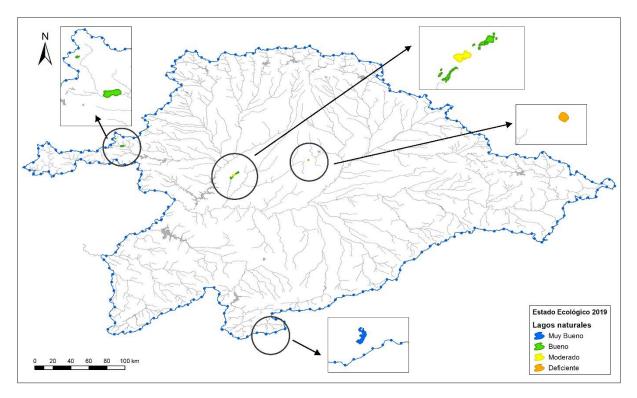


Figura 19. Resultados de estado ecológico en lagos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Muy Bueno	1	11,11%
Bueno	6	66,67%
Moderado	1	11,11%
Deficiente	1	11,11%
Malo	0	0,00%
TOTAL	9	100,00%

Tabla 48. Resultados de estado ecológico en lagos naturales

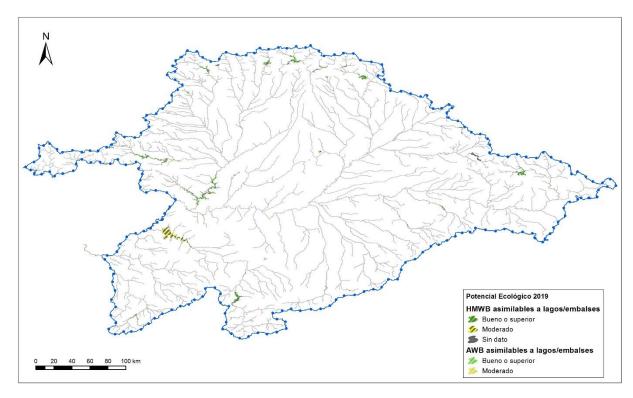


Figura 20. Resultados de potencial ecológico en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno o superior	36	67,92%
Moderado	12	22,64%
Deficiente	1	1,89%
Malo	0	0,00%
Sin datos	4	7,55%
TOTAL	53	100,00%

Tabla 49. Resultados de potencial ecológico en AWB y HMWB asimilables a lagos (embalses)

5.1.1. Síntesis del estado o potencial ecológico

Se muestra a continuación una síntesis del estado/potencial ecológico resultante de la última evaluación de estado (año 2019) y su comparativa con los datos del PH2C (año de evaluación 2013) en la Tabla 50.

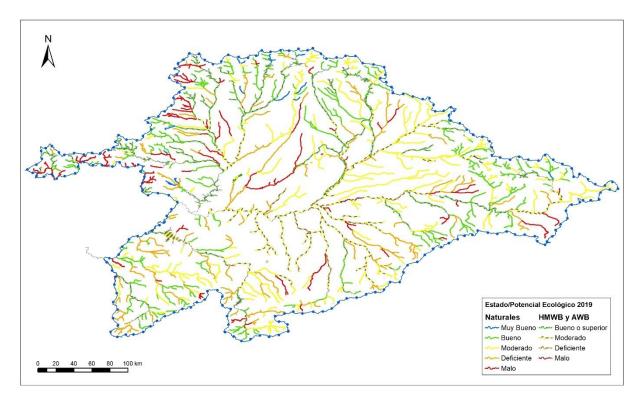


Figura 21. Resultados de estado/potencial ecológico en todas las MSPF (Fuente: CHD)

	PH3C (2019)		PH2C (2013)	
Clase	Nº masas de agua	% del total	Nº masas de agua	% del total
Bueno o superior	303	42,80%	211	29,76%
Peor que bueno	401	56,64%	498	70,24%
Sin datos	4	0,56%	0	0,00%
TOTAL (1)	708	100,00%	709	100,00%

⁽¹⁾ El número de masas entre el 2^{do} y 3^{er} ciclo de planificación ha variado al haberse realizado para este tercer ciclo una actualización en la caracterización de las masas de agua.

Tabla 50. Síntesis estado/potencial ecológico en todas las MSPF

En esta comparativa, para el borrador de Plan Hidrológico de III ciclo, aún no se tiene integrado en la totalidad de las masas de agua el indicador de EFI+integrado (principal indicador biológico de fauna piscícola, que engloba indicadores indirectos basado en la afección hidromorfológica), por lo que la mejora que recoge la tabla debe tomarse con cautela. Puede ayudar a la interpretación de los resultados la información recogida en el Apéndice II — Valoración del estado de las masas de agua superficial de este anejo.

5.2. Estado químico

Los resultados de estado químico obtenidos en las masas de agua de la parte española de la demarcación hidrográfica del Duero son los representados en los siguientes mapas y tablas.

Figura 22. Rsultados de estado químico en ríos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno	443	96,51%
No alcanza el bueno	16	3,49%
TOTAL	459	100,00%

Tabla 51. Resultados de estado químico en ríos naturales

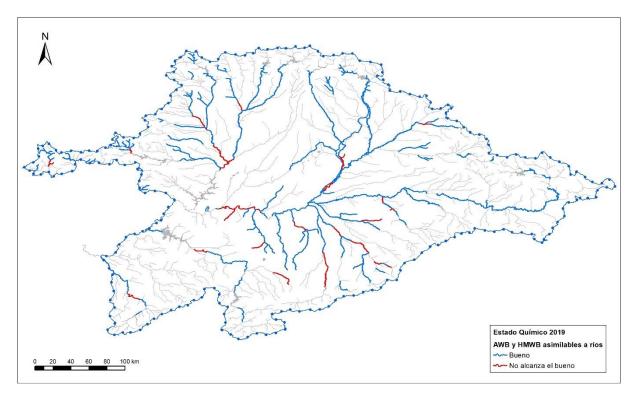


Figura 23. Resultados de estado químico en AWB y HMWB asimilables a ríos (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno	159	85,03%
No alcanza el bueno	28	14,97%
TOTAL	187	100,00%

Tabla 52. Resultados de estado químico en AWB y HMWB asimilables a ríos

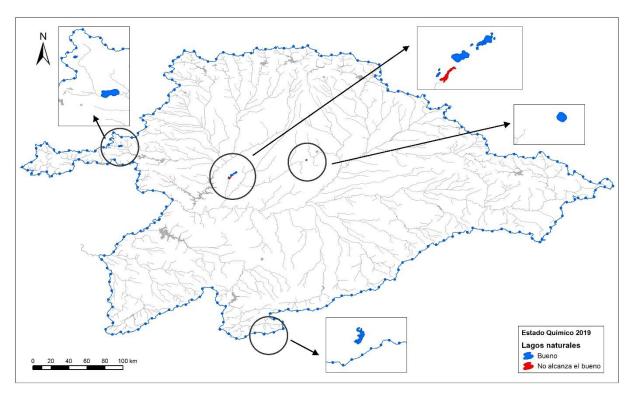


Figura 24. Resultados de estado químico en lagos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno	8	88,89%
No alcanza el bueno	1	11,11%
TOTAL	9	100,00%

Tabla 53. Resultados de estado químico en lagos naturales

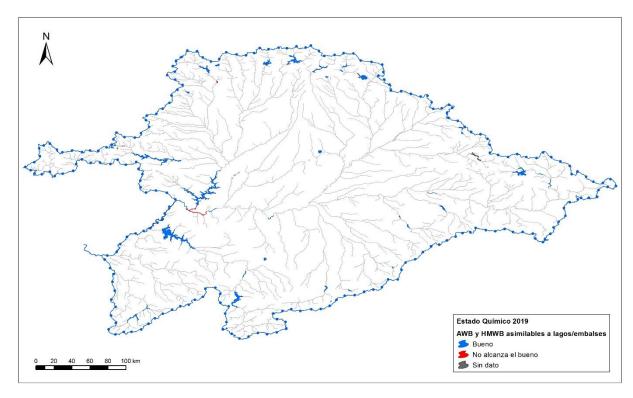


Figura 25. Resultados de estado químico en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno	50	94,34%
No alcanza el bueno	2	3,77%
Sin datos	1	1,89%
TOTAL	53	100,00%

Tabla 54. Resultados de estado químico en AWB y HMWB asimilables a lagos (embalses)

5.2.1. Síntesis del estado químico

Se muestra a continuación una síntesis del estado químico resultante de la última evaluación de estado (año 2019) y su comparativa con los datos del PH2C (año de evaluación 2013) en la Tabla 55.

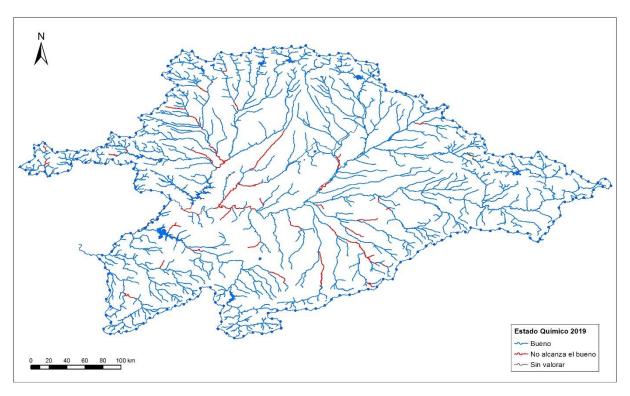


Figura 26. Resultados de estado químico en las MSPF (Fuente: CHD)

	PH3C (2019)		PH3C (2019) PH2C (2013)	
Clase	Nº masas de agua	% del total	Nº masas de agua	% del total
Bueno	660	93,22%	677	95,49%
No alcanza el bueno	47	6,64%	28	3,95%
Sin datos	1	0,14%	4	0,56%
TOTAL (1)	708	100,00%	709	100,00%

⁽¹⁾ El número de masas entre el 2^{do} y 3^{er} ciclo de planificación ha variado al haberse realizado para este tercer ciclo una actualización en la caracterización de las masas de agua.

Tabla 55. Síntesis estado químico en las MSPF

Es necesario mencionar dos factores importantes que explican la comparación: Durante este ciclo de planificación se ha incrementado sustancialmente tanto el número de masas de agua muestreadas sí como el número de parámetros a muestrear. Este hecho, junto con el de la mayor exigencia que las nuevas normas han traído en cuanto a ciertos límites de buen estado, hace que el número de incumplimientos sea mayor, sin que realmente haya empeorado el estado de las masas de agua. Puede ayudar a la interpretación de los resultados la información recogida en el Apéndice II – Valoración del estado de las masas de agua superficial de este anejo.

5.2.2. Contaminación química debida a la presencia de sustancias ubicuas

Durante los trabajos de seguimiento y control del estado de las masas de agua se han detectado un total de 35 masas de agua que en 2019 han presentado incumplimiento por mercurio medido en agua y/o biota (Tabla 56 y Figura 27).

De estos incumplimientos solamente en una masa de agua se detecta una fuente puntual causante de su incumplimiento, provocada por una antigua fábrica de sales de mercurio, aunque el vertido actualmente no exista.

En un total de 21 masas de agua no se ha podido establecer una fuente de emisión asociada a este incumplimiento. Se seguirá investigando en base a la actualización del inventario de presiones y fuentes contaminantes, pero con los datos actuales considera que la presencia de mercurio obedece al carácter ubicuo de esta sustancia, derivado de su alta persistencia en el medio y su gran capacidad de bioacumulación, y no se han considerado como incumplimientos.

En las 13 masas restantes no se ha podido constatar inequívocamente el origen del incumplimiento de Hg, pero se han identificado potenciales fuentes de emisión sobre las que se han diseñado medidas para reforzar los controles, de cara a ampliar conocimiento sobre la posible presencia de este contaminante. A efectos de este plan, con la información disponible, no se consideran incumplimientos.

idmasa	Nombre corto	Incumplimiento Mercurio	Evaluación del Estado	Motivo Evaluación del Estado
30400049	Río Órbigo 7	ВІОТА	NO	
30400050	Río Tera (Zamora) 5	AGUA	NO	
30400070	Río Rubagón 2	ВІОТА	NO	
30400112	Río Urbel	ВІОТА	NO	
30400115	Río de los Ausines 1	ВІОТА	NO	
30400125	Río Sequillo 2	ВІОТА	NO	
30400154	Río Carrión 7	BIOTA Y AGUA	NO	
30400232	Río Arlanza 3	ВІОТА	NO	
30400309	Río Esgueva 2	ВІОТА	NO	
30400335	Río Ucero 2	ВІОТА	NO	No se considera incumplimiento en la evaluación del estado al no haberse posido
30400345	Río Duero 17	BIOTA Y AGUA	NO	establecer una fuente de emisión asociada a este incumplimiento de Hg.
30400383	Río Cega 3	ВІОТА	NO	este incumplimiento de rig.
30400395	Río Duero 24	BIOTA Y AGUA	NO	
30400407	Río Duratón 8	ВІОТА	NO	
30400418	Río Riaza 4	ВІОТА	NO	
30400422	Río Adaja 9	AGUA	NO	
30400440	Río Moros 5	BIOTA	NO	
30400449	Río Adaja 5	BIOTA	NO	
30400505	Río Tormes 13	BIOTA	NO	
30400538	Río Yeltes 4	ВІОТА	NO	

idmasa	Nombre corto	Incumplimiento Mercurio	Evaluación del Estado	Motivo Evaluación del Estado
30800675	Embalse de Las Vencías	BIOTA Y AGUA	NO	
30400039	Río Bernesga 8	ВІОТА	NO	
30400073	Río Camesa 2	ВІОТА	NO	
30400149	Río Carrión 3	ВІОТА	NO	
30400155	Río Carrión 8	ВІОТА	NO	
30400170	Arroyo Serranos	AGUA	NO	No se considera incumplimiento en la
30400264	Río Pisuerga 14	BIOTA	NO	evaluación del estado porque, aunque se
30400365	Río Duero 13	BIOTA	NO	hayan identificado potenciales fuentes de emisión, no se ha podido constatar
30400522	Río Águeda 4	BIOTA	NO	inequívocamente el origen del
30400810	Río Bernesga 5	ВІОТА	NO	incumplimiento de Hg.
30400813	Río Arlanzón 6	BIOTA	NO	
30400825	Río Duero 14	BIOTA	NO	
30800661	Embalse de Cernadilla	AGUA	NO	
30800666	Embalse de Ricobayo	AGUA	NO	
30400438	Río Eresma 5	ВІОТА	SI	Sí se considera en la evaluación del estado por detectarse una fuente puntual causante de su incumplimiento.

Tabla 56. Incumplimientos por mercurio detectados en 2019

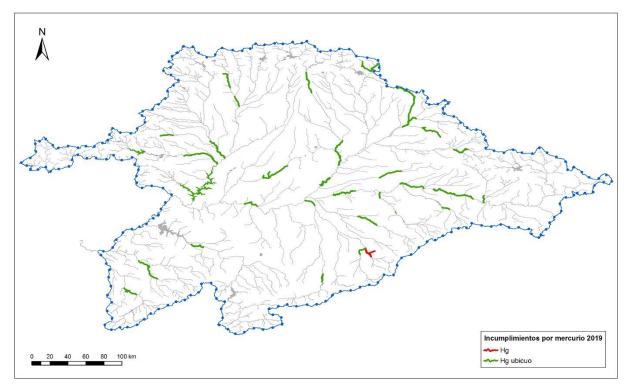


Figura 27. Incumplimientos por mercurio detectados en 2019. (Fuente: CHD)

5.3. Estado global

El estado general o global de todas las masas de agua superficial que controla la CHD, diferenciadas por categoría de masa de agua, se refleja en los mapas y tablas presentados a continuación.

A partir de estos resultados se deben identificar las masas de agua en riesgo de empeorar su estado químico e incluir en el programa de medidas aquellas necesarias para evitar el deterioro de dichas masas por presiones antrópicas, tales como limitar los vertidos y otras posibles fuentes de contaminación puntual o difusa.

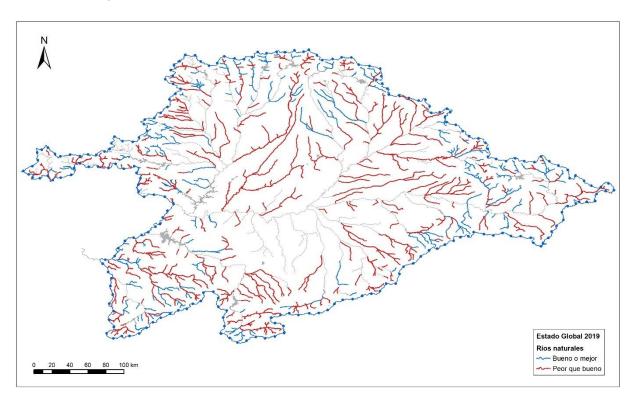


Figura 28. Resultados de estado en ríos naturales (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno o mejor	163	35,51%
Peor que bueno	296	64,49%
TOTAL	459	100,00%

Tabla 57. Resultados de estado en ríos naturales

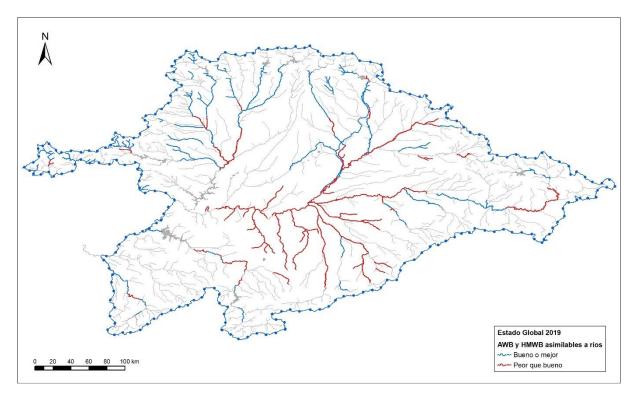


Figura 29. Resultados de estado en AWB y HMWB asimilables a ríos (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno o mejor	89	47,59%
Peor que bueno	98	52,41%
TOTAL	187	100,00%

Tabla 58. Resultados de estado en AWB y HMWB asimilables a ríos

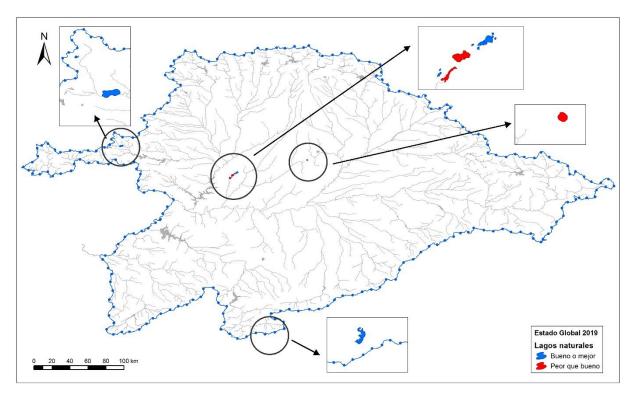


Figura 30. Resultados de estado en lagos naturales (Fuente: CHD).

Clase	Nº masas de agua	% del total
Bueno o mejor	6	66,67%
Peor que bueno	3	33,33%
TOTAL	9	100,00%

Tabla 59. Resultados de estado en lagos naturales

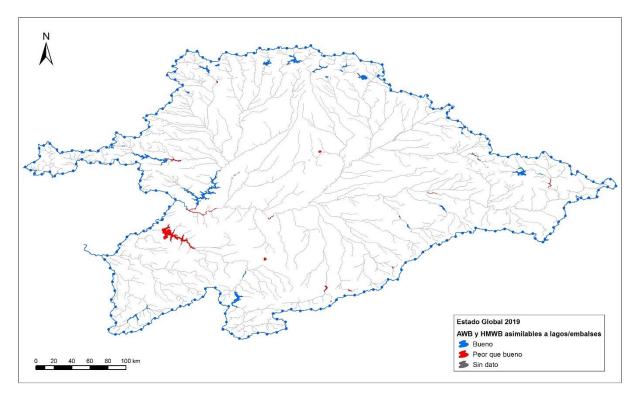


Figura 31. Resultados de estado en AWB y HMWB asimilables a lagos (embalses) (Fuente: CHD)

Clase	Nº masas de agua	% del total
Bueno o mejor	34	64,15%
Peor que bueno	15	28,30%
Sin datos	4	7,55%
TOTAL	53	100,00%

Tabla 60. Resultados de estado en AWB y HMWB asimilables a lagos (embalses)

5.3.1. Síntesis del estado global

Se muestra a continuación una síntesis del estado global resultante de la última evaluación de estado (año 2019) y su comparativa con los datos del PH2C (año de evaluación 2013) en la Tabla 61.

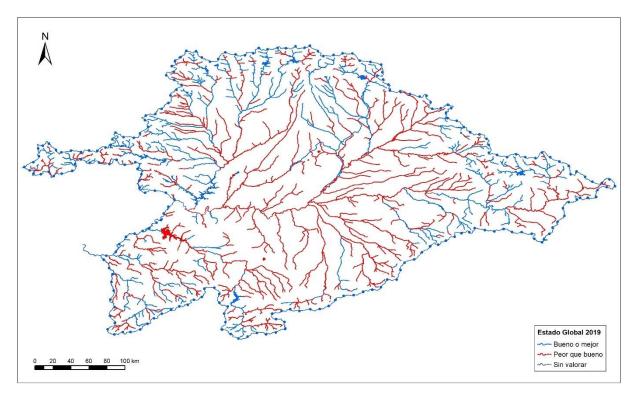


Figura 32. Resultados de estado global en las MSPF (Fuente: CHD)

	PH3C (2019)			
Clase	Nº masas de agua % del total			
Bueno o mejor	292	41,24%		
Peor que bueno	412	58,19%		
Sin datos	4	0,56%		
TOTAL (1)	708	100,00%		

Tabla 61. Síntesis estado global en las MSPF

5.4. Cambios con respecto al plan 2016-2021

Se muestra en la siguiente tabla una comparación entre el estado evaluado para el último año disponible (2019) y el estado del PH2C (año 2013 de base para su evaluación)

	PH3C (2019)		PH3C (2019) PH2C (2013)	
Clase	Nº masas de agua	% del total	Nº masas de agua	% del total
Bueno o mejor	292	41,24%	204	28,77%
Peor que bueno	412	58,19%	505	71,23%
Sin datos	4	0,56%	0	0,00%
TOTAL (1)	708	100,00%	709	100,00%

⁽¹⁾ El número de masas entre el 2^{do} y 3^{er} ciclo de planificación ha variado al haberse realizado para este tercer ciclo una actualización en la caracterización de las masas de agua.

Tabla 62. Comparativa estado global MSPF PH2C-PH3C

La incorporación de nueva normativa de la evaluación del estado respecto al PH2C, nuevos parámetros medidos, nuevos puntos de muestreo, aplicación de medidas, etc.., son en parte las causas por las que se producen diferencias que quedan justificadas masa a masa en el apéndice III. Comparativa estado de las masas de agua superficial PH2C-PH3C.

6. RESULTADOS DE LA VALORACIÓN DEL ESTADO DE LAS MASAS DE AGUA SUBTERRÁNEA

6.1. Estado químico

De acuerdo a la "Guía para la evaluación del estado de las aguas superficiales y subterráneas" publicada por el MITERD el 16/10/2020 y aprobada por la instrucción (SEMA 14-10-2020), se muestran en los siguientes apartados los resultados de la evaluación del estado químico teniendo en cuenta los resultados de cada uno de los test empleados para la evaluación del estado químico presentados en el punto 4.1 del presente anejo, estableciéndose finalmente el estado químico de la masa como el peor de los test realizados para cada una.

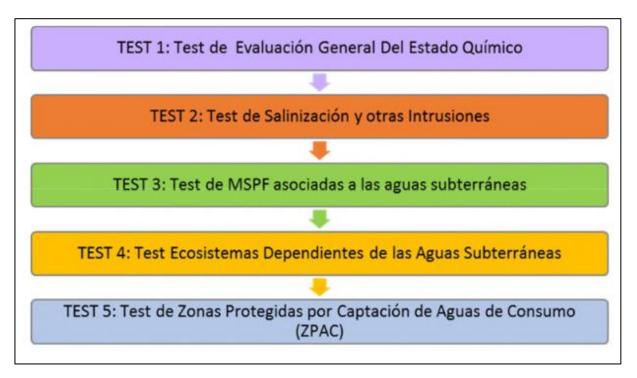


Figura 33. Test de evaluación del estado químico (Fuente: MITECO)

6.1.1. Test 1: Evaluación general del estado químico

Este test tiene un carácter general y debe realizarse siempre, puesto que evalúa si el impacto de la contaminación en las aguas subterráneas está tan extendido que supone un deterioro significativo de la capacidad de la MSBT de soportar los usos humanos. La evaluación general del estado químico de las aguas subterráneas se centra en la totalidad de la MSBT, considerándose de una manera global.

El Test de Evaluación General Del Estado Químico, debe realizarse en todas las MSBT declaradas en riesgo y para cada una de las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico.

El test se realiza sobre las masas identificadas en riesgo de no alcanzar el buen estado químico y por las sustancias causantes. Se realiza un test por cada una de las sustancias identificadas, repitiéndose dicho test tantas veces como sea necesario (un test por sustancia)

Los límites establecidos para evaluar la masa en mal estado son:

- Normas de Calidad (Nitratos 50 mg/L; Plaguicidas 0,1 μg/L plaguicidas individuales o 0,5 μg/L suma)
- Valores Umbral definidos para las masas en riesgo.

La metodología de evaluación de este test implica la comparación de los muestreos recientes de la red de seguimiento sobre las sustancias y masas en riesgo, y una vez comparados, establecer el alcance de la afección si es que esta ocurre.

Para ello la Guía metodológica prevé utilizar los dos últimos años para establecer los valores actuales de concentración de las sustancias causantes del riesgo (ampliables hasta 6). En la demarcación se ha establecido como la concentración actual de cada punto de muestreo, la del promedio de los tres últimos años con medidas (2018, 2019 y 2020) que aseguran una visión más completa y segura de la situación de cada punto del programa de seguimiento del Estado Químico y de las Zonas Protegidas.

En aquellas MSBT donde el promedio actual haya superado el VU o la Norma de Calidad en algún punto de muestreo, se verifica el alcance de dicho incumplimiento. La valoración del alcance del incumplimiento de la masa se basa en la representatividad de cada punto de muestreo sobre la totalidad de la masa utilizando el método de los polígonos de Thiessen. Así se asimila que cuando una estación de control supera los límites establecidos se ve afectada la parte de la masa correspondiente a ese punto. De este modo, cuando el porcentaje afectado es menor del 20%, se considera que la masa supera el test, en cambio, si el alcance es superior a este 20% se debe determinar si existen investigaciones adicionales que contradigan que el alcance del incumplimiento es significativo.

Este último punto se ha constatado en la demarcación únicamente para los nitratos en la masa 400033 — Aliste, donde la presión agrícola y ganadera no es significativa y sus niveles de uso del agua subterránea son muy bajos. Ante esta situación se ha establecido que la afección derivada del incumplimiento de uno de sus puntos no es representativa de los usos y presiones de la zona ni de la masa y por tanto la masa se encuentra en buen estado.

Como resultado del Test 1 – Evaluación general del estado químico, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado químico, y sus causas.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 1 (General)	Parámetros
400014	Villadiego	General	Malo	Nitratos
400015	Raña del Órbigo	Superior	Malo	Nitratos, amonio
400016	Castrojeriz	General	Malo	Nitratos
400025	Páramo de Astudillo	General	Malo	Nitratos
400029	Páramo del Esgueva y del Cerrato	Superior	Malo	Nitratos
400030	Aranda de Duero	General	Malo	Nitratos
400032	Páramo de Torozos	Superior	Malo	Nitratos

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 1 (General)	Parámetros
400038	Tordesillas-Toro	General	Malo	Nitratos y arsénico
400039	Aluvial del Duero: Aranda - Tordesillas	Superior	Malo	Amonio
400041	Aluvial del Duero: Tordesillas - Zamora Superio		Malo	Nitratos, sodio, cloruros, arsénico, sulfatos
400043	Páramo de Cuéllar	Superior	Malo	Nitratos
400045	Los Arenales - Tierra de Pinares	General	Malo	Nitratos
400047	Los Arenales - Tierras de Medina y La Moraña	General	Malo	Amonio
400051	Páramo de Escalote	General	Malo	Nitratos
400052	Salamanca	General	Malo	Nitratos y arsénico
400055	Curso medio del Eresma, Pirón y Cega	General	Malo	Nitratos
400057	Segovia	General	Malo	Nitratos
400067	Terciario detrítico bajo los páramos	General	Malo	Sulfatos

Tabla 63. MSBT con mal estado químico por el Test 1 (General)

El resultado muestra una gran concordancia con los datos ofrecidos por el proyecto PATRICAL para la cuenca del Duero y confirma los problemas de contaminación por sustancias nitrogenadas en la cuenca.

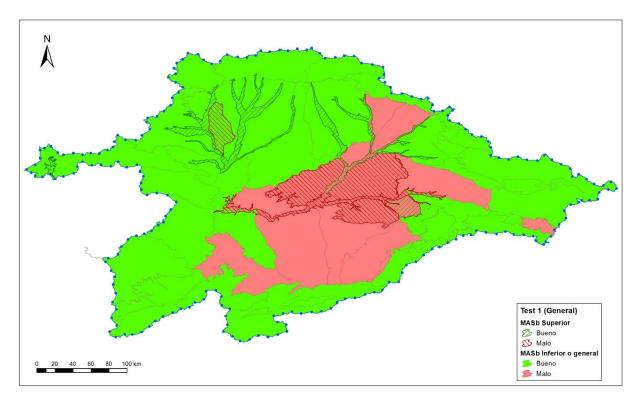


Figura 34. Resultados Test 1 (General)

6.1.2. Test 2: Test de salinización y otras intrusiones

Según la Guía de evaluación del estado "Una MSBT se diagnosticará en mal estado cuantitativo cuando en algún punto de control se supere el valor umbral de un parámetro explicativo de la intrusión establecido para esa masa de agua y ello sea coincidente con la existencia de tendencias ascendentes de este parámetro explicativo o impactos significativos como consecuencia de la intrusión y de la presión por extracciones".

Previamente a la realización de este test, se ha llevado a cabo la evaluación del estado cuantitativo, en la cual se identificarán aquellas zonas en las que existe presión por extracciones y con ello un riesgo de salinización u otro tipo de intrusión.

Este test deberá llevarse a cabo o "Aplica", cuando se cumplan los siguientes requisitos:

- se ha identificado en la MSBT una presión por extracciones o un impacto por contaminación salina u otras intrusiones.
- existen en la MSBT posibles fuentes de salinización o intrusión próximas, como pueden ser la línea de costa, lagos salinos, formaciones geológicas salinas, masas de agua de peor calidad, etc.

Otro aspecto a tener en cuenta, es la posible existencia de impactos históricos prolongados causados por la sobreexplotación de las aguas subterráneas. Estas extracciones continuadas podrían haber provocado un descenso significativo de los niveles piezométricos en la MSBT. Aunque en la actualidad, dichos niveles se encuentren estabilizados y se haya alcanzado un equilibro entre las extracciones y el recuso disponible, podría estar produciéndose una intrusión continuada y deterioro de la calidad de las aguas subterráneas, por lo que también debería realizarse en este test.

Este test debe realizarse para cada una de las sustancias químicas causantes del riesgo por salinización u otro tipo de intrusión de la MSBT. En el caso de salinización, se realizará el test como mínimo para cloruros, y sulfatos o conductividad eléctrica, si existe información analítica disponible. Se realizará un test por cada una de las sustancias identificadas, repitiéndose dicho test tantas veces como sea necesario (un test por sustancia).

En aquellas MSBT donde se haya superado el VU (definido en la Tabla 42. Valores Umbral) en algún punto de muestreo, se verifica la existencia de tendencias ascendentes significativas en relación con la evolución de la calidad de las aguas de acuerdo con el procedimiento propuesto. Finalmente, en caso de que fuera necesario, se analiza si existen impactos significativos en la MSBT como consecuencia de la intrusión y de la presión por extracciones.

En la cuenca se determinan inicialmente las masas con riesgos cuantitativos y a ellas se añaden aquellas que podrían verse afectadas indirectamente por procesos de salinización, y sobre todas ellas se determina si existe algún exceso sobre el valor umbral propuesto para cada sustancia en el promedio de cada punto de control de los tres últimos años.

Sobre estas 4 masas sobre las que se realiza el test y que figuran en la Tabla 64, se consideran sus tendencias crecientes en iones relacionados con la intrusión salina (sulfatos, sodio, conductividad o cloruros) y conductividad eléctrica. Para ello se desarrollan unas fichas de tendencias siguiendo la metodología Mann Kendall para estas sustancias y en la totalidad de los muestreos disponibles para cada estación.

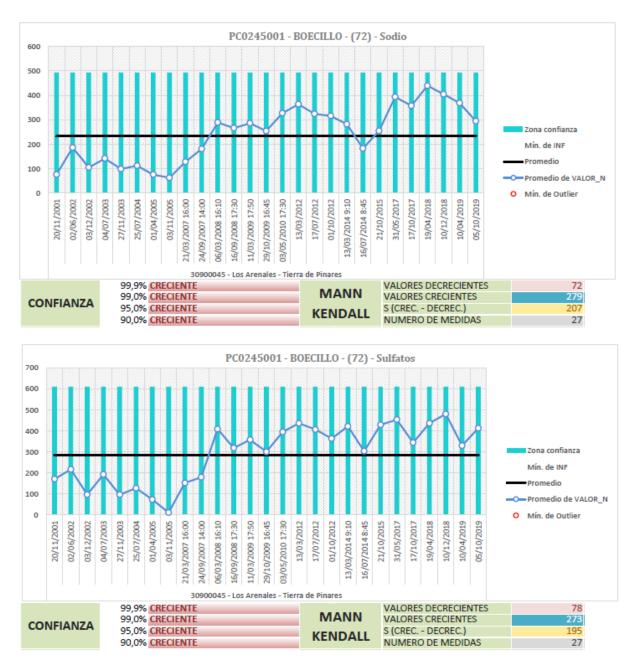


Figura 35. Detalle de la ficha de tendencias químicas

Paralelamente a este estudio de tendencias desarrolla una correlación con los impactos históricos de la masa que puedan ser indicativos de un proceso de salinización. Según los criterios descritos en el documento oficial, si alguno de esos dos pasos (identificación de tendencias o de impactos) son positivos, la masa debe considerarse en mal estado.

A continuación se muestran las masas sobre las que se ha definido algún punto que supera el valor umbral de algún parámetro indicativo de salinización y sobre las que se han estudiado las tendencias de concentración de los mismos y los posibles impactos relacionados.

Código	Nombre de la masa de agua subterránea	Tendencia significativa	Identificación de impactos
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	No	-
400039	Aluvial del Duero: Aranda - Tordesillas	No	-
400045	Los Arenales - Tierra de Pinares	Sí	Descensos piezométricos significativos
400067	Terciario Detrítico Bajo Los Páramos	No	

Tabla 64. Identificación de tendencias e impactos en test intrusión salina, en MSBT con superación de VU por parámetros relacionados con la intrusión salina

Para la determinación de tendencias de calidad y piezometría se ha realizado un estudio por punto de control de la masa.

En lo referente a la masa 400067, Terciario Detrítico Bajo Los Páramos, se tiene en consideración que, pese a detectarse alguna tendencia creciente en alguno de sus puntos con respecto a los sulfatos, no existe una correspondencia entre los años de aumento de la concetración y las tendencias piezométricas de esa misma zona, y de forma general de toda la masa, que se está recuperando de forma clara desde hace 15 años. Más bien este ascenso parece responder a la disminución del uso de la propia captación sobre la que se realiza el muestreo, y no corresponderse con procesos de llamada de flujos subterráneos profundos ya que la masa se encuentra en un periodo de recuperación y de menor demanda de recurso.

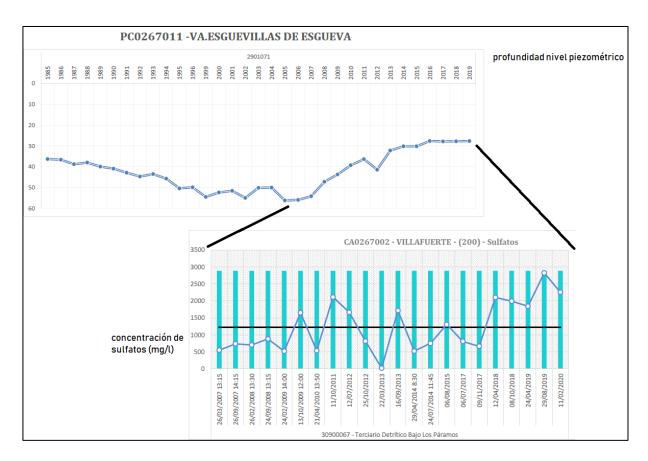


Figura 36. Evolución piezométrica/concentración de sulfatos en masa 400067

Como resultado del Test 2 – Salinización y otras intrusiones, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado químico.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 4 (Intrusión)
400045	Los Arenales - Tierra de Pinares	General	Malo

Tabla 65. MSBT con mal estado químico por el Test 2 (Intrusión)

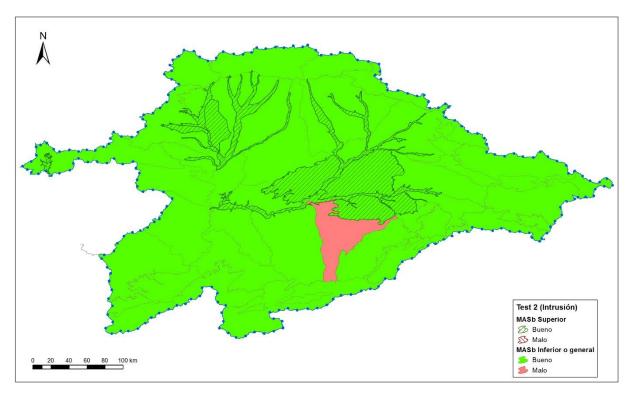


Figura 37. Resultados Test 2 (Intrusión)

6.1.3. Test 3: MSPF asociadas a las aguas subterráneas

El test está diseñado para determinar en qué medida la transferencia de contaminantes procedentes de las aguas subterráneas hacia las aguas superficiales, o cualquier otro impacto consecuente en la ecología de estas aguas superficiales, es suficiente para amenazar los objetivos de la DMA para estas aguas superficiales asociadas. En este caso, se entiende por aguas superficiales asociadas todas las MSPF que en régimen natural presenten conexión hidráulica con las aguas subterráneas.

Dicha conexión debe tener un carácter ganador o variable, por lo que no se tendrán en cuenta aquellas MSPF que en régimen natural tengan un carácter perdedor, puesto que su caudal y calidad química no dependerían de las aguas subterráneas. Los EDAS asociados a las MSPF se evaluarán implícitamente con la realización del test de la MSPF con la que está asociada el EDAS. Por tanto, este test servirá para evaluar las MSPF asociadas y los ecosistemas dependientes de ellas (EAAS y mixtos EAAS-ETDAS). Si los ecosistemas no están asociados a ninguna MSPF, ya sea porque se trata

de ecosistemas terrestres (ETDAS) o bien porque no se han definido MSPF, se realizará el Test 4: Test de ecosistemas dependientes de las aguas subterráneas (EDAS)

Este test deberá llevarse a cabo, según detalla el documento, cuando se cumplan los siguientes requisitos:

- Se han identificado en la MSBT asociadas a la MSBT
- La MSPE asociadas se encuentra en mal estado.

Actualmente en la demarcación se están llevando a cabo estudios que determinen claramente la relación río-acuífero, pero el establecimiento de esta transferencia es un cálculo muy complejo, por lo que, en una visión garantista de la evaluación del test se han contemplado los estados de todas las masas de agua superficiales de la cuenca. Cada una de estas MSPF será evaluada de manera independiente. Se determinan cuáles son las sustancias causantes de que estas aguas superficiales se encuentren en mal estado y se realiza un test por cada una de las sustancias identificadas sobre las que se puede encontrar una correlación con los parámetros subterráneos muestreados, repitiéndose dicho test tantas veces como sea necesario (un test por sustancia)

En este test se han considerado únicamente las masas de agua superficiales para las cuales se han podido correlacionar los parámetros que las evalúan en mal estado con los contaminantes subterráneos, resultando finalmente afecciones por compuestos nitrogenados.

Se han determinado los VU para dichas sustancias. Para ello, como norma general y en ausencia de valores eco-toxicológicos específicos para la MSPF evaluada, se utilizan como Valores Criterio los establecidos en las Normas de Calidad Ambiental (valores medios anuales o NCA-MA) o límites de cambio de clase de estado, para aguas superficiales continentales especificadas en el RDSE.

Para calcular el VC, se aplica un factor de dilución (FD) y un factor de atenuación (FA) para corregir la NCA correspondiente. Los FA y FD se calculan dependiendo del nivel de conocimiento de la interacción entre el agua subterránea y el agua superficial y el modelo conceptual de la zona donde sitúa la MSPF asociada. El VC se calcula según la siguiente fórmula:

$$VC = NCA x \frac{FA}{FD}$$

Para calcular los FA y FD específicos de cada caso se exige una buena comprensión del modelo conceptual de la MSBT de su la interacción con las aguas superficiales, ofreciendo la guía de evaluación de estado la aplicación de los valores FA=2 y FD=0,25 como adecuados para los contextos hidrogeológicos más habituales.

En la cuenca del Duero se ha establecido para las estaciones tipo manantial un FA=1 y FD=0,5, entendiendo que la posible relación con las masas superficiales en este tipo de estaciones es más directa, mientras que para el resto de estaciones se consideran los factores propuestos en el documento guía de FA=2 y FD=0,25.

Parámetro superficial	Parámetro subt.
Amonio total [mg/L]	Amonio
Cobre	Cobre
Fluoruros	Fluoruros

Parámetro superficial	Parámetro subt.
Fósforo total [mg P/m³]	Fósforo total
Nitratos [mg/L]	Nitratos
Oxígeno disuelto [mg/L]	Oxígeno disuelto (campo)
Selenio	Selenio
Zinc	Zinc
Tasa de saturación del oxígeno [%]	Tasa de saturación de oxígeno (%)

Tabla 66 Correlación parámetros

Los valores umbral calculados para las masas de agua subterránea deben ser comparados con el valor actual de concentración de esas sustancias. Atendiendo a las posibilidad que permite el documento de establecer el periodo para determinar el valor promedio que valore la afección subterránea de 2 a 6 años, se ha optado utilizar los tres últimos años de muestreo de cada uno de los puntos que forman el programa de seguimiento de la MSBT (programa de vigilancia y programa de control operativo), asegurando así una estabilidad de los datos y una cobertura de muestreo mayor de la cuenca.

En aquellas MSBT en las que se haya excedido un valor umbral en algún punto de muestreo asociado a alguno de los ecosistemas o MSPF que se evalúan a juicio de experto, si la carga contaminante transferida desde las aguas subterráneas a las aguas superficiales puede ser superior al 50% de la carga total de contaminante en el ecosistema o MSPF asociada.

El resultado del análisis es el siguiente:

Código MSBT	Nombre MSBT	Código Punto Control	MSPF relacionada	Ecosistema relacionado	Parámetro	Tipo	Afecta
400015	Raña del Órbigo	PC0215003	30400252 - 30400196		Nitratos	Piezómetro	Afección
400029	Páramo del Esgueva y del Cerrato	CA0229001			Nitratos	Manantial	Afección
400029	Páramo del Esgueva y del Cerrato	CA0229002	30400264 30400292 30400293		Nitratos	Manantial	Afección
400029	Páramo del Esgueva y del Cerrato	CA0229003	30400309 30400311 30400317 30400322		Nitratos	Manantial	Afección
400029	Páramo del Esgueva y del Cerrato	CA0229004	30400322 30400362 30400375 30400668		Nitratos	Manantial	Afección
400029	Páramo del Esgueva y del Cerrato	CA0229005	30400668		Nitratos	Manantial	Afección
400030	Aranda de Duero	CA0230002	30400308 30400309		Nitratos	Manantial	Afección
400032	Páramo de Torozos	CA0232002			Nitratos	Manantial	Afección
400032	Páramo de Torozos	CA0232003	30400264 30400360	ES4140053- Montes del	Nitratos	Manantial	Afección
400032	Páramo de Torozos	CA0232005	30400358 30400359	Cerrato	Nitratos	Manantial	Afección
400032	Páramo de Torozos	CA0232006	30400375 30400668		Nitratos	Manantial	Afección

Código MSBT	Nombre MSBT	Código Punto Control	MSPF relacionada	Ecosistema relacionado	Parámetro	Tipo	Afecta
400032	Páramo de Torozos	CA0232007			Nitratos	Manantial	Afección
400045	Los Arenales - Tierra de Pinares	PC0245034	30400393		Amonio	Piezómetro	Afección
400055	Curso medio del Eresma, Pirón y Cega	CA0255007	30400389		Nitratos	Piezómetro	Afección
400051	Páramo de Escalote	CA0251002	30400428		Nitratos	Manantial	Afección
400016	Castrojeriz	CA0216001			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400016	Castrojeriz	CA0216004			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400017	Burgos	CA0217001			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400037	Cuenca de Almazán	CA0237010			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400025	Páramo de Astudillo	CA0225002			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400025	Páramo de Astudillo	CA0225003			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400025	Páramo de Astudillo	CA0225005			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico
400045	Los Arenales - Tierra de Pinares	CA0245007			Nitratos	Piezómetro	No se puede correlacionar por el contexto hidrogeológico
400055	Curso medio del Eresma, Pirón y Cega	CA0255019			Amonio	Piezómetro	No se puede correlacionar por el contexto hidrogeológico
400057	Segovia	CA0257005			Nitratos	Manantial	No se puede correlacionar por el contexto hidrogeológico

Tabla 67. Test 3 (MSPF)

En el entorno de la masa 30400393 se sitúa el LIC ES4180124 Salgüeros de Aldeamayor, que podría verse afectado por las condiciones deficientes de la masa, si bien el estado de conservación del mismo no hacen suponer una afección clara de la masa superficial ni de la subterránea.

En cambio, sobre la masa 400025 Páramo de Astudillo, se sitúa parte del LIC ES4140129 Montes Torozos y Páramos de Torquemada-Astudillo. La conexión del ecosistema con el medio hídrico superficial en esta parte de la masa subterránea no está definido a nivel de masa de agua río y por ello no se considera en este test, sin embargo, se propone para estudio en el siguiente test de evaluación de los Ecosistemas Terrestres Dependientes de las Aguas Subterráneas debido a su estado medio de conservación.

Como resultado del Test 3 – MSPF asociadas a las aguas subterráneas, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado químico.

Código	Nombre de la masa de agua subterránea Horiz		Estado químico Test 3 (MSPF)
400015	Raña del Órbigo	General	Malo
400029	Páramo del Esgueva y del Cerrato	General	Malo
400030	Aranda de Duero	General	Malo
400032	Páramo de Torozos	Superior	Malo
400045	Los Arenales - Tierra de Pinares	Superior	Malo
400051	Páramo de Escalote	General	Malo
400055	Curso medio del Eresma, Pirón y Cega	General	Malo

Tabla 68. MSBT con mal estado químico por el Test 3 (MSPF)

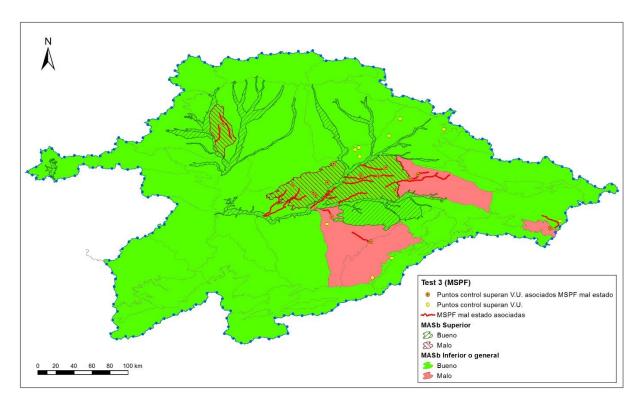


Figura 38. Resultados Test 3 (MSPF)

6.1.4. Test 4: Ecosistemas dependientes de aguas subterráneas (ETDAS)

El test está diseñado para evaluar si existe un daño significativo a los EDAS, causado por la concentración de contaminantes en las aguas subterráneas. El test debería determinar la posibilidad

de que las concentraciones de contaminantes en una MSBT, conduzcan a un impacto sobre el ecosistema que sea suficiente para amenazar sus objetivos medioambientales. Mediante este test se deberán evaluar los EAAS y mixtos EAAS/ETDAS que no sean MSPF, y todos los ETDAS.

Este test deberá llevarse a cabo o "Aplica", cuando se cumplan los siguientes requisitos:

- Se han identificado EDAS vinculados con la masa de agua subterránea (EAAS y mixtos EAAS/ETDAS que no sean MSPF y ETDAS).
- El EDAS identificado se encuentra en mal estado.

Por tanto, este test debe llevarse a cabo en todos los EDAS (EAAS y mixtos EAAS/ETDAS que no sean MSPF y ETDAS) que estén vinculados con la MSBT y se encuentren en mal estado.

La metodología de realización de este test es muy similar al anterior, teniendo en cuenta las masas d agua relacionadas con ecosistemas que no hayan sido identificados en el test anterior y para los que por lo tanto no sea relacionable la afección mediante las aguas superficiales.

El desarrollo del test supone, de forma análoga al anterior, la determinación de sustancias causantes de que el ecosistema se encuentra en mal estado, siendo necesario repetir este el test por cada sustancia referida. En aquellos casos en los que no se hayan identificado las sustancias responsables de que el EDAS esté en mal estado, se realizará el test para las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico.

Se han determinado los VU para dichas sustancias. Para ello, como norma general y en ausencia de valores eco-toxicológicos específicos para la MSPF evaluada, se utilizan como Valores Criterio los establecidos en las Normas de Calidad Ambiental (valores medios anuales o NCA-MA) o límites de cambio de clase de estado, para aguas superficiales continentales especificadas en el RDSE.

Para calcular el VC, se aplica un factor de dilución (FD) y un factor de atenuación (FA) para corregir la NCA correspondiente. Los FA y FD se calculan dependiendo del nivel de conocimiento de la interacción entre el agua subterránea y el agua superficial y el modelo conceptual de la zona donde sitúa la MSPF asociada. El VC se calcula según la siguiente fórmula:

$$VC = NCA x \frac{FA}{FD}$$

El resultado de estos análisis son idénticos en cuanto al número de puntos de control de aguas subterráneas que se obtiene en el test anterior.

Ante la dificultad de correlación entre el estado de conservación del ecosistema superficial y la posible afección de las aguas subterráneas se aplica el juicio de experto y el conocimiento del funcionamiento del modelo hidrogeológico local a la hora de determinar la valoración de este test.

Resultado de estos cálculos se define que el único de los ecosistemas relacionables con puntos donde se supera el VC propuesto que no hayan sido propuestos en el test anterior es el siguiente.

Código MSBT	Nombre MSBT Código Punto Control		Ecosistema relacionado	Parámetro	Tipo
400025	Páramo de Astudillo	CA0225002	F544 40420 NA	Nitratos	Manantial
400025	Páramo de Astudillo	CA0225003	ES4140129- Montes Torozos y Páramos de Torquemada-Astudillo	Nitratos	Manantial
400025	Páramo de Astudillo	CA0225005	raramos de Torquemada-Astudino	Nitratos	Manantial

Tabla 69. Test 4 (ETDAS)

Como resultado del Test 4 – ETDAS, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado químico.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado químico Test 3 (MSPF)
400025	Páramo de Astudillo	General	Malo

Tabla 70. MSBT con mal estado químico por el Test 4 (ETDAS)

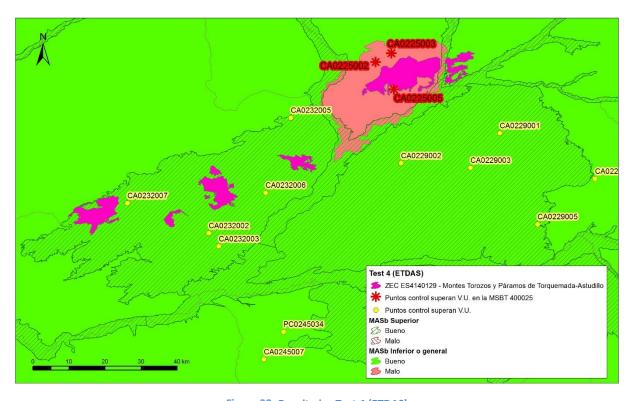


Figura 39. Resultados Test 4 (ETDAS)

6.1.5. Test 5: Zonas protegidas por captación de aguas de consumo (ZPAC)

Este test considera la evaluación del deterioro de la calidad de las aguas para el consumo humano.

Deberá llevarse a cabo cuando existan ZPAC vinculadas a la MSBT, y realizarse para cada una de las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico.

Cabe destacar que los puntos de muestreo del programa de seguimiento empleados para la realización del test, deberán corresponderse con zonas protegidas por captación de aguas de consumo. A este efecto se han incluido en el análisis las estaciones de control del programa de Zonas

Protegidas Prepotables, así como aquellas estaciones fuera de este programa que tengan como uso el abastecimiento y que se encuentren dentro de una zona protegida de abastecimiento subterráneo.

El desarrollo del test supone identificar las sustancias responsables de que la MSBT se encuentre en riesgo de no alcanzar el buen estado químico y sobre ellas ser lleva a cabo un test por cada una de las sustancias identificadas, repitiéndose dicho test tantas veces como sea necesario.

Dentro de las posibilidades que el documento propone para calcular los datos actuales se utiliza el promedio de los tres últimos años de cada uno de los puntos de muestreo del programa de seguimiento que se correspondan con la ZPAC

Se compara este promedio con el 50% de la norma de referencia para aguas de consumo humano (por defecto el RD.140/2003, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano). En aquellas MSBT que se supera el 50% de la norma de referencia, se valora si esta concentración de la sustancia en las aguas subterráneas es debida a causas naturales o antrópicas, mediante comparándolo con los del niveles de referencia (nivel de fondo) de dicha sustancia en la masa.

En aquellas MSBT, donde la superación del 50 % del valor paramétrico del RD no sea por causas naturales, se estudia la existencia de tendencias crecientes significativas en relación con la evolución de la calidad de las aguas. Finalmente, en caso de que existan tendencias ascendentes, se determina si se prevé que estas tendencias harán que se supere el VU establecido dentro del ciclo de planificación actual. A tal efecto se han desarrollado unas fichas sobre las estaciones incluidas en esta fase que siguen el modelo que se muestra a continuación basado en los cálculos estadísticos de Mann-Kendall para la totalidad de las muestras disponibles del punto de control.

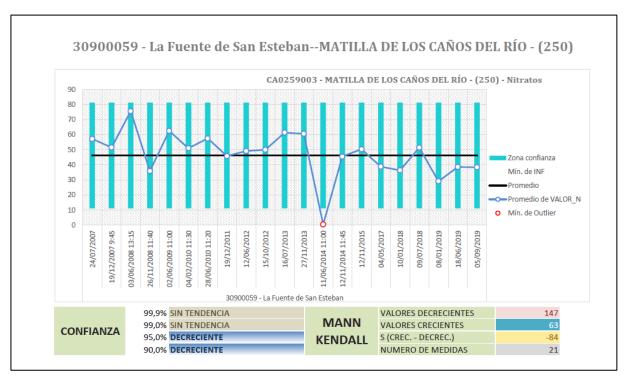


Figura 40. Detalle estudio de tendencias en zonas protegidas por abastecimiento

Se muestra a continuación un resumen de los cálculos reflejando el resultado menos favorable de entre los puntos estudiados en cada masa de agua.

Código MSBT	Parámetro	Resultado análisis
400006 - Valdavia	Amonio	No supera el 50% del RD
400006 - Valdavia	Sulfatos	No supera el 50% del RD
400006.Amonio	Amonio	No supera el VU (sin tendencia o decreciente)
400006.Sulfatos	Sulfatos	No supera el 50% del RD
400007 - Terciario Detrítico del Esla-Cea	Nitratos	No supera el VU (sin tendencia o decreciente)
400007.Nitratos	Nitratos	No supera el 50% del RD
400008 - Aluviales del Esla-Cea	Cloruros	No supera el 50% del RD
400008 - Aluviales del Esla-Cea	Nitratos	No supera el 50% del RD
400008 - Aluviales del Esla-Cea	Sulfatos	No supera el 50% del RD
400009 - Tierra de Campos	Fluoruros	No supera el VU (tendencia creciente no determinante)
400010 - Carrión	Nitratos	No supera el 50% del RD
400010 - Carrión	Nitritos	No supera el 50% del RD
400010.Nitratos	Nitratos	No supera el 50% del RD
400010.Nitritos	Nitritos	No supera el 50% del RD
400012 - La Maragatería	Amonio	No supera el 50% del RD
400014 - Villadiego	Nitratos	Supera el VU
400016 - Castrojeriz	Fluoruros	Supera el 50% del RD (causas naturales)
400016 - Castrojeriz	Nitratos	No supera el VU (sin tendencia o decreciente)
400016 - Castrojeriz	Sulfatos	No supera el VU (tendencia creciente no determinante)
400017 - Burgos	Amonio	No supera el 50% del RD
400017 - Burgos	Nitratos	No supera el VU (tendencia creciente no determinante)
400018 - Arlanzón-Río Lobos	Amonio	No supera el 50% del RD
400020 - Aluviales del Pisuerga-Carrión y del Arlanza- Arlanzón	Amonio	No supera el 50% del RD
400020 - Aluviales del Pisuerga-Carrión y del Arlanza- Arlanzón	Sulfatos	No supera el 50% del RD
400022 - Sanabria	Arsénico	Supera el 50% del RD (causas naturales)
400025 - Páramo de Astudillo	Nitratos	Supera el VU
400025 - Páramo de Astudillo	Sulfatos	No supera el 50% del RD
400027 - Sierras de Neila y Urbión	Nitratos	No supera el 50% del RD
400029 - Páramo del Esgueva y del Cerrato	Arsénico	Supera el 50% del RD (causas naturales)
400029 - Páramo del Esgueva y del Cerrato	Fluoruros	Supera el 50% del RD (causas naturales)
400029 - Páramo del Esgueva y del Cerrato	Nitratos	No supera el VU (sin tendencia o decreciente)
400030 - Aranda de Duero	Nitratos	Supera el VU
400030.Nitratos	Nitratos	No supera el 50% del RD
400031 - Villafáfila	Cloruros	Supera el 50% del RD (causas naturales)
400031 - Villafáfila	Fluoruros	Supera el 50% del RD (causas naturales)
400031 - Villafáfila	Nitratos	No supera el VU (sin tendencia o decreciente)
400031 - Villafáfila	Potasio	Supera el 50% del RD (causas naturales)
400031 - Villafáfila	Sodio	Supera el 50% del RD (causas naturales)
400031.Cloruros	Cloruros	Supera el 50% del RD (causas naturales)
400031.Fluoruros	Fluoruros	No supera el 50% del RD
400031.Nitratos	Nitratos	No supera el VU (tendencia creciente no determinante)
400031.Potasio	Potasio	Supera el 50% del RD (causas naturales)

Código MSBT	Parámetro	Resultado análisis
400031.Sodio	Sodio	Supera el 50% del RD (causas naturales)
400032 - Páramo de Torozos	Amonio	No supera el 50% del RD
400032 - Páramo de Torozos	Nitratos	Supera el VU
400032 - Páramo de Torozos	Potasio	No supera el 50% del RD
400033 - Aliste	Nitritos	No supera el 50% del RD
400033 - Aliste	Potasio	No supera el 50% del RD
400038 - Tordesillas - Toro	Arsénico	Supera el VU
400038 - Tordesillas - Toro	Nitratos	Supera el VU
400039 - Aluvial del Duero: Aranda-Tordesillas	Amonio	No supera el 50% del RD
400039 - Aluvial del Duero: Aranda-Tordesillas	Cloruros	No supera el 50% del RD
400039 - Aluvial del Duero: Aranda-Tordesillas	Nitratos	No supera el VU (sin tendencia o decreciente)
400039 - Aluvial del Duero: Aranda-Tordesillas	Nitritos	No supera el 50% del RD
400039 - Aluvial del Duero: Aranda-Tordesillas	Potasio	No supera el 50% del RD
400039 - Aluvial del Duero: Aranda-Tordesillas	Sulfatos	Supera el 50% del RD (causas naturales)
400042 - interfluvio Riaza-Duero	Nitratos	No supera el 50% del RD
400042 - interfluvio Riaza-Duero	Nitritos	No supera el VU (sin tendencia o decreciente)
400042.Nitratos	Nitratos	No supera el 50% del RD
400042.Nitritos	Nitritos	No supera el 50% del RD
400043 - Páramo de Cuéllar	Nitratos	Supera el VU
400043 - Páramo de Cuéllar	Nitritos	No supera el 50% del RD
400043.Nitratos	Nitratos	Supera el VU
400043.Nitritos	Nitritos	No supera el 50% del RD
400044 - Páramo de Corcos	Amonio	No supera el 50% del RD
	Amomo	No supera el VU (tendencia creciente no
400044 - Páramo de Corcos	Nitratos	determinante)
400045 - Los Arenales - Tierra de Pinares	Amonio	No supera el 50% del RD
400045 - Los Arenales - Tierra de Pinares	Arsénico	Supera el 50% del RD (causas naturales)
400045 - Los Arenales - Tierra de Pinares	Nitratos	No supera el VU (sin tendencia o decreciente)
400045 - Los Arenales - Tierra de Pinares	Nitritos	No supera el 50% del RD
400045 - Los Arenales - Tierra de Pinares	Sodio	No supera el 50% del RD
400045 - Los Arenales - Tierra de Pinares	Sulfatos	No supera el 50% del RD
400047 - Los Arenales - Tierras de Medina y La Moraña	Amonio	No supera el 50% del RD
400047 - Los Arenales - Tierras de Medina y La Moraña	Arsénico	No supera el 50% del RD
400047.Amonio	Amonio	No supera el 50% del RD
400048 - Los Arenales - Tierra del Vino	Amonio	No supera el 50% del RD
400048 - Los Arenales - Tierra del Vino	Arsénico	Supera el 50% del RD (causas naturales)
400049 - Tierras de Ayllón y Riaza	Arsénico	Supera el 50% del RD (causas naturales)
400049 - Tierras de Ayllón y Riaza	Nitratos	No supera el 50% del RD
400050 - Tierras de Caracena - Berlanga	Nitratos	No supera el VU (sin tendencia o decreciente)
400050.Nitratos	Nitratos	No supera el 50% del RD
400051 - Páramo de Escalote	Nitratos	No supera el VU (sin tendencia o decreciente)
400052 - Salamanca	Arsénico	Supera el 50% del RD (causas naturales)
400052 - Salamanca	Nitratos	Supera el VU
400052 - Salamanca 400052.Nitratos	Nitratos	No supera el VU (sin tendencia o decreciente)
400052.Nitratos	Arsénico	Supera el 50% del RD (causas naturales)
400055 - Curso medio del Eresma, Pirón y Cega	Amonio	No supera el 50% del RD
400055 - Curso medio del Eresma, Piron y Cega	Arsénico	Supera el VU
400055 - Curso medio del Eresma, Piron y Cega	Nitratos	Supera el VU
		•
400055 - Curso medio del Eresma, Pirón y Cega 400055.Amonio	Nitritos Amonio	No supera el 50% del RD No supera el 50% del RD
		· ·
400055.Nitratos	Nitratos	No supera el VU (sin tendencia o decreciente)

Código MSBT	Parámetro	Resultado análisis
400055.Nitritos	Nitritos	Supera el 50% del RD (causas naturales)
400056 - Prádena	Potasio	No supera el 50% del RD
400056.Potasio	Potasio	No supera el 50% del RD
400057 - Segovia	Nitratos	No supera el 50% del RD
400057.Nitratos	Nitratos	No supera el VU (sin tendencia o decreciente)
400058 - Campo Charro	Fluoruros	No supera el 50% del RD
400059 - La Fuente de San Esteban	Arsénico	Supera el 50% del RD (causas naturales)
400059 - La Fuente de San Esteban	Nitratos	No supera el VU (sin tendencia o decreciente)
400060 - Gredos	Arsénico	Supera el 50% del RD (causas naturales)
400060 - Gredos	Nitratos	No supera el 50% del RD
400061 - Sierras de Ávila y la Paramera	Cloruros	No supera el VU (tendencia creciente no determinante)
400063 - Ciudad Rodrigo	Arsénico	Supera el 50% del RD (causas naturales)
400064 - Valle Amblés	Arsénico	Supera el 50% del RD (causas naturales)
400066 - Valdecorneja	Arsénico	Supera el 50% del RD (causas naturales)
400066 - Valdecorneja	Fluoruros	Supera el 50% del RD (causas naturales)
400067 - Terciario Detrítico Bajo Los Páramos	Amonio	No supera el 50% del RD
400067 - Terciario Detrítico Bajo Los Páramos	Arsénico	No supera el 50% del RD
400067 - Terciario Detrítico Bajo Los Páramos	Cloruros	No supera el 50% del RD
400067 - Terciario Detrítico Bajo Los Páramos	Nitratos	No supera el 50% del RD
400067 - Terciario Detrítico Bajo Los Páramos	Sodio	No supera el 50% del RD
400067 - Terciario Detrítico Bajo Los Páramos	Sulfatos	No supera el 50% del RD

Tabla 71 Evaluación del test de zonas protegidas por consumo humano

Tras el análisis realizado se han obtenido las siguientes masas como en mal estado, en función de los resultados obtenidos en los puntos de control que se detallan en la tabla siguiente.

Para el resto de las masas se ha considerado que en los puntos de seguimiento de las zonas protegidas, bien no se superaban los NR en ningún punto o bien que era por causas naturales, o bien que no se han detectado tendencias crecientes significativas.

Código MSBT	Nombre MSBT	Código Punto Control	Parámetro	Resultado análisis
400014	Villadiego	CA0214002	Nitratos	Supera VU
400025	Páramo de Astudillo	CA0225001	Nitratos	Supera VU
400025	Páramo de Astudillo	CA0225003	Nitratos	Supera VU
400030	Aranda de Duero	CA0230002	Nitratos	Supera VU
400030	Aranda de Duero	CA0230009	Nitratos	Supera VU
400032	Páramo de Torozos	CA0232007	Nitratos	Supera VU
400038	Tordesillas-Toro	CA0238007	Nitratos	Supera VU
400038	Tordesillas-Toro	CA0238009	Arsénico	Supera VU
400043	Páramo de Cuéllar	CA0243001	Nitratos	Supera VU
400043	Páramo de Cuéllar	CA0243005	Nitratos	Supera VU
400052	Salamanca	CA0252004	Nitratos	Supera VU
400052	Salamanca	CA0252006	Nitratos	Supera VU
400052	Salamanca	CA0252015	Nitratos	Supera VU
400055	Curso medio del Eresma, Pirón y Cega	CA0255010	Arsénico	Supera VU
400055	Curso medio del Eresma, Pirón y Cega	CA0255026	Arsénico	Supera VU
400055	Curso medio del Eresma, Pirón y Cega	CA0255026	Nitratos	Supera VU

Tabla 72 Puntos de control en mal estado relacionados con ZPAC

Como resultado del Test 5 – Zonas protegidas por captación de aguas de consumo, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado químico.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado químico Test 5 (ZPAC)
400014	Villadiego	General	Malo
400025	Páramo de Astudillo	General	Malo
400030	Aranda de Duero	General	Malo
400032	Páramo de Torozos	Superior	Malo
400038	Tordesillas-Toro	General	Malo
400043	Páramo de Cuéllar	Superior	Malo
400052	Salamanca	General	Malo
400055	Curso medio del Eresma, Pirón y Cega	General	Malo

Tabla 73. MSBT con mal estado químico por el Test 5 (ZPAC)

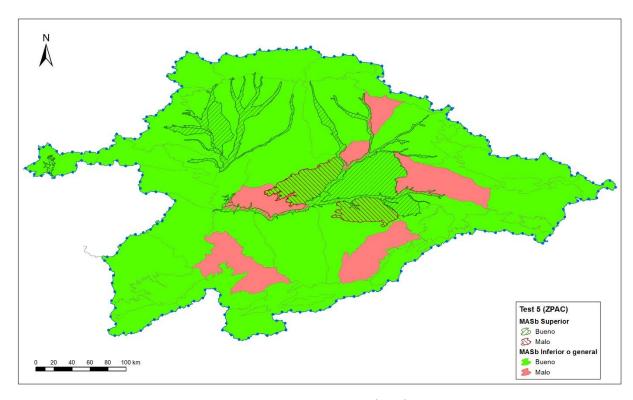


Figura 41. Resultados Test 5 (ZPAC)

6.1.6. Evaluación final del estado químico

Tras la aplicación de los test anteriores se presenta a continuación la evaluación final del estado químico de las masas de agua subterránea en la Tabla 74 y Figura 42. El resultado final de estos test señala que en total, 18 masas de agua subterránea no alcanzan el buen estado químico según el resultado de los test llevados a cabo para su evaluación. Se destacan en casillas en color morado los empeoramientos con respecto al PHD 2016-2021.

Código	Nombre de la masa de agua	Horizonte	Test 1 (GENERA	1)	Test (INTRUS		Test 3 (MSPF)		Test 4 (ETDA)		Test 5 (ZPAC)		Valoración final del ESTADO QUÍMICO	
Coulgo	subterránea	Horizonte	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF
400001	La Tercia-Mampodre-Riaño	General	Bueno	Alta	Bueno	Alta	Bueno	Baja	Bueno	Alta	Bueno	Alta	Bueno	Alta
400002	La Babia - Luna	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400003	Fuentes Carrionas - La Pernía	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400004	Quintanilla-Peñahorada-Las Loras	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400005	Terciario Detríco del Tuerto-Esla	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400006	Valdavia	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400007	Terciario Detríco del Esla-Cea	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400008	Aluviales del Esla-Cea	Superior	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400009	Tierra de Campos	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Media
400010	Carrión	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400011	Aluvial del Órbigo	Superior	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400012	La Maragatería	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400014	Villadiego	General	Malo (Nitratos)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	Malo	Alta
400015	Raña del Órbigo	Superior	Malo (Nitratos, Amonio)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta
400016	Castrojeriz	General	Malo (Nitratos)	Alta	Bueno	Alta	Bueno	Media	Bueno	Alta	Bueno	Media	Malo	Media
400017	Burgos	General	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Alta	Bueno	Media	Bueno	Media
400018	Arlanzón-Río Lobos	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400019	Raña de la Bañeza	Superior	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Superior	Bueno	Media	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media
400021	Sierra de la Demanda	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400022	Sanabria	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400023	Vilardevós-Laza	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400024	Valle del Tera	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400025	Páramo de Astudillo	General	Malo (Nitratos)	Alta	Bueno	Alta	Bueno	Media	Malo	Alta	Malo	Alta	Malo	Alta
400027	Sierras de Neila y Urbión	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400028	Verín	Superior	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400029	Páramo del Esgueva y del Cerrato	Superior	Malo (Nitratos)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Bueno	Media	Malo	Media
400030	Aranda de Duero	General	Malo (Nitratos)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Malo	Alta	Malo	Alta
400031	Villafáfila	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta

Código	Nombre de la masa de agua subterránea	Horizonte	Test 1 (GENERA	L)		Test 2 (INTRUSION)		Test 3 (MSPF)		Test 4 (ETDA)		Test 5 (ZPAC)		Valoración final del ESTADO QUÍMICO	
	Subterranea		EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	
400032	Páramo de Torozos	Superior	Malo (Nitratos)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Malo	Alta	Malo	Alta	
400033	Aliste	General	Bueno	Media	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Media	
400034	Araviana	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Buen	Alta	Bueno	Alta	
400035	Cabrejas - Soria	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Buen	Alta	Bueno	Alta	
400036	Moncayo	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Buen	Alta	Bueno	Alta	
400037	Cuenca de Almazán	General	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Alta	Bueno	Alta	Bueno	Media	
400038	Tordesillas-Toro	General	Malo (Nitratos y arsénico)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	Malo	Alta	
400039	Aluvial del Duero: Aranda - Tordesillas	Superior	Malo (Amonio)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	
400040	Sayago	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400041	Aluvial del Duero: Tordesillas - Zamora	Superior	Malo (Nitratos, sodio, cloruros, arsénico, sulfatos)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	
400042	Interfluvio Riaza-Duero	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400043	Páramo de Cuéllar	Superior	Malo (Nitratos)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	Malo	Alta	
400044	Páramo de Corcos	Superior	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Media	
400045	Los Arenales - Tierra de Pinares	General	Malo (Nitratos)	Alta	Malo	Alta	Malo	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	
400046	Sepúlveda	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400047	Los Arenales - Tierras de Medina y La Moraña	General	Malo (Amonio)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	
400048	Los Arenales - Tierra del Vino	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400049	Tierras de Ayllón y Riaza	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400050	Tierras de Caracena - Berlanga	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400051	Páramo de Escalote	General	Malo (Nitratos)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	
400052	Salamanca	General	Malo (Nitratos y arsénico)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta	Malo	Alta	
400053	Vitigudino	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400054	Guadarrama - Somosierra	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	
400055	Curso medio del Eresma, Pirón y Cega	General	Malo (Nitratos)	Alta	Bueno	Alta	Malo	Alta	Bueno	Alta	Malo	Alta	Malo	Alta	

Código	Nombre de la masa de agua subterránea	Horizonte	Test 1 te (GENERAL)		Test 2 (INTRUSION)		Test 3 (MSPF)		Test 4 (ETDA)		Test 5 (ZPAC)		Valoración final del ESTADO QUÍMICO	
	Subterrairea		EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF	EVAL	CONF
400056	Prádena	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400057	Segovia	General	Malo (Nitratos)	Alta	Bueno	Alta	Bueno	Media	Bueno	Alta	Bueno	Alta	Malo	Alta
400058	Campo Charro	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400059	La Fuente de San Esteban	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Media
400060	Gredos	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400061	Sierras de Ávila y la Paramera	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Media	Bueno	Media
400063	Ciudad Rodrigo	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400064	Valle de Amblés	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400065	Las Batuecas	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400066	Valdecorneja	General	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta
400067	Terciario detrítico bajo los páramos	General	Malo (Sulfatos)	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Bueno	Alta	Malo	Alta

Tabla 74. Evaluación del estado químico

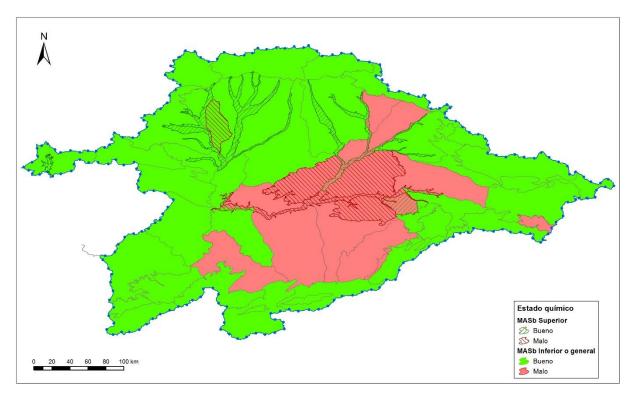


Figura 42. Estado químico de las masas de agua subterránea

6.1.7. Cambios con respecto al plan 2016-2021

El desarrollo de la nueva normativa al respecto de la evaluación del estado, así como la incorporación de nuevos datos químicos, nuevos puntos de muestreo, etc son en parte las causas por las que un mayor número de masas se evalúan en este documento como en mal estado. Por otra parte las presiones que actúan sobre toda la cuenca no han remitido de forma significativa, no permitiendo la mejora de las masas de agua en estado malo de anteriores evaluaciones.

Con respecto a las evaluaciones del test general del estado químico, se ha constatado la inclusión de tres masas de agua subterránea en mal estado que no se evaluaban de esta forma en el plan anterior. Se desarrolla a continuación un cuadro explicativo que responde a este cambio en el estado (masas 400014, 400030 y 400067).

	Nombre de la masa			ΓEST				
Código	de agua subterránea	1	2	3	4	5	Detalles del incumplimiento	
400014	Villadiego	х				х	La masa se encuentra en riesgo en las últimas evaluaciones de presiones. Los registros de sus puntos de control siempre han estado cercanos a superar el límite establecido para los nitratos y en esta evaluación, los valores recopilados, así como los avances en la representatividad geográfica de las estaciones han supuesto su mal estado químico. Se ha detectado también un incumplimiento en el test de zonas protegidas por consumo humano.	
400015	Raña del Órbigo	х		х			La masa se sitúa en la zona de la cuenca con mayores excesos de fertilizantes por hectárea, con elevada presión agrícola, y cuyos excedentes, forzados por las condiciones hidrogeológicas poco permeables de esta masa repercuten en un drenaje hacia los cursos superficiales de las aguas subterráneas con elevados contenidos en nutrientes. Resultado de esa situación es el incumplimiento del test general y del test de afección a las aguas superficiales.	
400016	Castrojeriz	х					Los incumplimientos en nitratos provocan la evaluación en mal estado químico de la masa de agua.	

	Nombre de la masa		TEST				
Código	de agua subterránea	1	2	3	4	5	Detalles del incumplimiento
400025	Páramo de Astudillo	х			x	х	Masa con elevados registros históricos por nutrientes. La afección al ETDAS se establece ya que sobre este ecosistema, que se reparte en varias masas situadas en los páramos centrales de la cuenca, no se identifica un vínculo claro con ninguna masa de agua superficial en mal estado sobre la masa subterránea en estudio, pero su estado medio de conservación podría estar influido por el mal estado de las aguas subterráneas.
400029	Páramo del Esgueva y del Cerrato	х		x			Junto con el resto de masas de los páramos centrales de la cuenca, esta masa se ve afectada por graves problemas de nutrientes en sus aguas. En el ámbito de esta masa, y conectados con ella a partir de las surgencias de la misma, discurren los ríos Esgueva, el arroyo Jaramiel o el Madrazos, que se evalúan en mal estado actualmente. Puede establecerse una relación clara en cuanto al aporte de sustancias nitrogenadas desde la masa subterránea y por ello se evalúa en mal estado según el test 3.
400030	Aranda de Duero	х		x		х	El estudio de la representatividad geográfica de las estaciones ha supuesto su mal estado químico general por incumplimiento en un 20% de su superficie. Adicionalmente se ha identificado una afección a los tramos del río Esgueva que circulan por su superficie, así como el incumplimiento de las normas de calidad sobre dos de los puntos seleccionados para establecer el daño a las zonas protegidas por consumo humano.
400032	Páramo de Torozos	х		x		х	Situación de afección a las aguas superficiales muy similar a la descrita en el Páramo de Esgueva, pero sobre los ríos Hornija y Bajoz así como la parte del Pisuerga que discurre entre los páramos. Se establece que el contenido de nitratos subterráneos afecta negativamente al estado de conservación del LIC ES4140053 Montes del Cerrato. Por otra parte, se detectan incumplimientos en zonas protegidas para abastecimiento, con el consiguiente fallo en el test 5.
400038	Tordesillas-Toro	х				х	Los incumplimientos en nitratos y el exceso de arsénico en sus aguas sobre el valor umbral designado provocan la evaluación en mal estado químico de la masa de agua. Adicionalmente se evidencian afecciones sobre las aguas protegidas por consumo en 2 estaciones seleccionadas.
400039	Aluvial del Duero: Aranda - Tordesillas	х					Los incumplimientos en amonio provocan la evaluación en mal estado químico de la masa de agua.
400041	Aluvial del Duero: Tordesillas - Zamora	х					La masa soporta elevadas concentraciones de nitratos y sobre ella se han definido valores umbral para varios iones que han sido superados significativamente en esta evaluación como el sodio, cloruros, arsénico o sulfatos. Las tendencias crecientes detectadas en estos parámetros, si bien no está completamente identificado su origen, se enmarcan en la zona de la cuenca que acaba de circular por el territorio con mayores descensos piezométricos acumulados, sin embargo, su estrecha relación con los recuros fluviales y su bajo índice de explotación subterráneo no sugieren que sobre esta masa se puedan desarrollar procesos de intrusión salina.
400043	Páramo de Cuéllar	х				x	La masa forma parte de los acuíferos calcáreos del centro de la masa situados en los páramos y comparte los mismos problemas que las ellas con respecto a los contenidos en nitratos. La evaluación negativa del test de afección a zonas protegidas se debe al incumplimiento en dos de los puntos seleccionados.
400045	Los Arenales - Tierra de Pinares	х	х	х			Los contenidos históricos de nutrientes en esta masa son muy elevados. Al fallo en el primer test se añade el mal estado en el test de intrusión debido a las tendencias crecientes identificadas y al impacto por descenso piezométrico acumulado en la masa. Las afecciones sobre el río Cega y el Eresma son responsables del fallo en el test 3.
400047	Los Arenales - Tierras de Medina y La Moraña	х					El territorio de los Arenales es históricamente el más afectado de la cuenca por las actividades agrícolas, que se reflejan en sus incumplimientos de estado y en la afección que tanto los contenidos en nutrientes como el descenso piezométrico tienen en las aguas superficiales que discurren por su superficie.
400051	Páramo de Escalote	х		x			El páramo de Escalote tiene un territorio escaso, pero los puntos de seguimiento del estado químico marcan históricamente unos valores de parámetros nitrogenados muy elevados. La evaluación de afección a aguas superficiales ha resultado en la identificación de la contribución de estas aguas cargadas en nitrógeno al caudal del río Morón y por tanto del incumplimiento de este test 3.

	Nombre de la masa			TES			
Código	de agua subterránea	1	2	3	4	5	Detalles del incumplimiento
400052	Salamanca	х				х	Los incumplimientos en nitratos y el exceso de arsénico en sus aguas sobre el valor umbral designado provocan la evaluación en mal estado químico de la masa de agua. El contenido en arsénico puede intuirse como una ocurrencia natural fruto de la removilización del mismo de ciertas facies, pero la pequeña muestra histórica del mismo y el incumplimiento en varios puntos de control son suficientes como para señalar la masa en mal estado. Adicionalmente se evidencian afecciones sobre las aguas protegidas por consumo en 3 estaciones seleccionadas
400055	Curso medio del Eresma, Pirón y Cega	х		х		х	Los contenidos en parámetros nitrogenados en esta masa son históricamente elevados. En la evaluación de afección a las aguas superficiales puede evidenciarse la repercusión sobre el río Malucas. Adicionalmente se evidencian afecciones sobre las aguas protegidas por consumo en 3 estaciones seleccionadas, una de ellas por arsénico.
400057	Segovia	х					La masa se sigue evaluando en mal estado por el contenido en nitratos de una de sus tres estaciones de control del estado químico.
400067	Terciario detrítico bajo los páramos	х					La masa se encuentra en mal estado por su tendencia creciente en sulfatos, que a provoca un incumplimiento en el test 1
	Masas con mal estado d	uími	ന ല	n el I	PH3C	, un	e estaban en buen estado químico en el PH2C
							ne continúan así en el PH3C

Masas con mal estado químico en el PH2C , que continúan así en el PH3C

Tabla 75. Detalle sobre los incumplimientos en la evaluación del estado químico

6.2. Estado cuantitativo

De acuerdo a la Guía de evaluación del estado, se muestran en los siguientes apartados los resultados de la evaluación del estado cuantitativo teniendo en cuenta los resultados de cada uno de los test empleados para la evaluación del estado cuantitativo.

Aunque el procedimiento de evaluación de estado indica que esta evaluación debe de realizarse sobre las masas en riesgo, esta evaluación se ha realizado sobre todas las masas de la cuenca.

6.2.1. Test 1: Balance hídrico

Según la Guía de evaluación del estado "Una MSBT se diagnosticará en mal estado cuantitativo cuando la tendencia piezométrica a largo plazo sea descendente. Del mismo modo, si la tendencia piezométrica no es descendente pero el índice de explotación es mayor o igual a 1, la MSBT se diagnosticará en mal estado cuantitativo. Por último, la MSBT también estará en mal estado, cuando el índice de explotación sea mayor o igual a 0,8 y además exista una tendencia piezométrica a largo plazo descendente, evaluada mediante modelo."

La valoración de los recursos subterráneos es compleja, puesto que considera y valora las relaciones laterales entre distintas masas y las que se establecen con el medio superficial.

Para ajustar estos valores se ha trabajado con un modelo de simulación general del funcionamiento de la cuenca que permite considerar conjuntamente los distintos términos del balance hidráulico. Este modelo se ha construido sobre la herramienta de simulación PATRICAL (Precipitación Aportación en Tramos de Red Integrados con Calidad del Agua) permite construir modelos del ciclo hidrológico y calidad de las aguas distribuidos espacialmente, con paso de tiempo de simulación mensual (Pérez, 2005).

Patrical permite determinar el balance de las distintas masas de agua subterránea en régimen natural y alterado, analizándose los siguientes componentes del balance:

- Recarga por Iluvia: modelado a través de los datos del modelo SIMPA (Cabezas et al., 2000;
 Ruiz, 2000; Estrela y Quintas, 1996) y asignado a las masas de agua subterránea de forma cartográfica
- Transferencias laterales: resultado del propio modelo, para cuyo ajuste a la situación real de la masa intervienen, entre otros, los registros piezométricos de la CHD o de la red de aforos de los últimos años.
- Recarga desde ríos y salida a ríos: resultado del propio modelo. Se emplean los mismos métodos de ajuste y calibración.
- Retornos de regadío: Calculados a través de las eficiencias de riego de cada unidad de demanda, con los valores medios de agricultura en cada unidad de demanda agrícola, tanto superficial como subterránea, que se superpone a la masa de agua subterránea.
- Recargas artificiales. Desde hace años se tienen valores medios de las recargas artificiales del Carracillo, Alcanzarén y Santiuste de San Juan Bautista de 15 hm³/año, que repercuten sobre el recurso disponible de la masa subterránea 400045 Los Arenales.

La determinación de la recarga a los acuíferos es compleja pues depende de varios factores no siempre de fácil cuantificación, destacando entre ellos la infiltración y las transferencias laterales. Además, parte del agua que se infiltra puede ser rechazada por el acuífero, en particular cuando el volumen de infiltración anual supera la capacidad de las reservas que el acuífero puede almacenar, configurando con ello un determinado balance entre entradas y salidas que da lugar a la estimación de los recursos subterráneos.

El modelo SIMPA y PATRICAL no consideran el valor límite de reservas, por lo que siempre que puede valora la infiltración sin rechazarla. Por eso en el análisis de recursos realizado en el Anejo 2 (Inventario de recursos hídricos naturales) de este PHD, se han limitado los valores de recarga de varias masas de agua subterránea desarrolladas sobre los granitoides o las rocas metamórficas del dominio hercínico-varisco (Montes de León, partes de la Cordillera Cantábrica, Sistema Central, Penillanura Zamorano-Salmantina) así como en aquellas otras de reducida permeabilidad regional (Sierra de La Demanda). En estos casos, los valores de recarga máxima se limitan a la estimación de sus reservas, como se explica en mayor detalle en el citado Anejo 2.

Así, en la presente revisión del inventario de recursos del III ciclo de planificación se ha considerado como infiltración a las masas de agua subterránea la estimada por los modelos SIMPA y ajustada por el modelo PATRICAL, una vez descontada la recarga rechazada. Se entiende por recarga rechazada la parte de infiltración teórica que no puede infiltrarse debido a que el acuífero está lleno y constituye una infiltración subsuperficial, que no alcanza la zona saturada y que retorna al sistema superficial sin pasar por el acuífero.

La Tabla 76 ofrece los resultados de esta revisión para el régimen natural y la estimación de los recursos disponibles por masa de agua. En esta tabla, para estimar los recursos naturales y los disponibles, se han considerado como sumandos los siguientes términos: infiltración por lluvia corregida por la fracción de recarga rechazada, entradas laterales desde otras masas de agua subterránea, recarga desde la red fluvial influente y recarga desde lagos influentes; de ese total se

resta la transferencia lateral a otras masas de agua subterránea. Con ese cálculo se obtiene el recurso natural total; para conocer el recurso disponible se detraen las necesidades ambientales, estimadas como el 20% del recurso natural total.

Los valores de infiltración de ríos y entradas y salidas laterales se han calculado mediante el uso del programa PATRICAL y la simulación del ciclo hidrológico. Los resultados del modelo PATRICAL se presentan en régimen natural y en régimen alterado. La idoneidad del uso del régimen natural por representar los valores prístinos de recarga se contrapone a la necesidad de establecer unos recursos alterados debidos a una situación ya mantenida en el tiempo de explotación, que provoca transferencias forzadas de ríos y otras masas y retornos de regadío, propios de un uso ya histórico del suelo.

De esta forma se establece que el modo más representativo de los recursos actuales de la masa y los que le corresponden de forma natural es utilizar unos valores medios que combinen estos dos escenarios, el natural y el alterado. Los valores promedio afectan a los parámetros de transferencia lateral a o hacia otras masas y la recarga procedente de drenajes de río. Los valores de recarga de lluvia no se ven afectados por ello.

Una vez estimada de esta forma el recurso natural disponible y la reserva medioambiental (considerando los valores medios de los escenarios natural y alterado), se estima el recurso disponible de cada masa de agua como el sumatorio entre los recursos disponibles y otras entradas antrópicas (retornos de riego y recargas artificiales).

El resultado de estas modelaciones y refinados de los resultados obtenidos para un mejor ajuste del modelo se muestran en la Tabla 76 que muestra los valores de recurso disponible de casa masa de aguas subterránea.

Código	Nombre	Recarga Lluvia	Infiltración ríos, lagos y embalses	Entradas Laterales	Salidas Laterales	Rest. ambiental	Retorno regadíos	Recarga artificial (Zanjas y balsas)	Recurso natural disponible	Recurso disponible
400001	La Tercia- Mampodre- Riaño	296,3	0,3	0	-41,2	-51,1	<u>0</u>		204,3	<u>204,3</u>
400002	La Babia - Luna	169,3	0,1	0	-20	-29,9	<u>0</u>		119,5	<u>119,5</u>
400003	Fuentes Carrionas - La Pernía	216,2	0,1	0	-6	-42,1	<u>0</u>		168,2	<u>168,2</u>
400004	Quintanilla- Peñahorada- Las Loras	143,5	0,4	0	-38,9	-20,7	<u>1,2</u>		84,3	<u>85,5</u>
400005	Terciario Detríco del Tuerto-Esla	207,5	0,3	97,7	-89,4	-31,6	<u>6,7</u>		184,5	<u>191,2</u>
400006	Valdavia	209,3	0,3	22,2	-28,7	-42,7	<u>9,1</u>		160,4	<u>169,5</u>
400007	Terciario Detríco del Esla-Cea	111,4	0,3	51	-52	-16,4	28,2		94,3	<u>122,5</u>
400008	Aluviales del Esla-Cea	56,6	0,1	18,3	-31,3	-22,4	<u>14,5</u>		21,3	<u>35,8</u>

Código	Nombre	Recarga Lluvia	Infiltración ríos, lagos y embalses	Entradas Laterales	Salidas Laterales	Rest. ambiental	Retorno regadíos	Recarga artificial (Zanjas y balsas)	Recurso natural disponible	Recurso disponible
400009	Tierra de Campos	144,8	26,9	47	-56,8	-27,1	<u>9,8</u>	, ,	134,8	<u>144,6</u>
400010	Carrión	67,7	0,1	4,1	-16,9	-13,7	<u>5,2</u>		41,3	<u>46,5</u>
400011	Aluvial del Órbigo	20	0,1	14,3	0	-18,6	<u>3,4</u>		15,8	<u>19,2</u>
400012	La Maragatería	186,5	0,9	4	-95,1	-21	<u>0,6</u>		75,3	<u>75,9</u>
400014	Villadiego	41,9	0,1	11,7	-4,5	-8,3	<u>0,2</u>		40,9	<u>41,1</u>
400015	Raña del Órbigo	31,3	0,1	0	0	-15,1	<u>37,6</u>		16,3	<u>53,9</u>
400016	Castrojeriz	69	0,1	11,7	0	-14,7	<u>0,3</u>		66,1	<u>66,4</u>
400017	Burgos	113	0,2	3,9	0	-30,3	<u>0,6</u>		86,8	<u>87,4</u>
400018	Arlanzón-Río Lobos	132	0,1	28,1	-59,4	-20,3	<u>0</u>		80,5	<u>80,5</u>
400019	Raña de la Bañeza	13,7	1,7	17	-20,1	-2	<u>0,9</u>		10,3	<u>11,2</u>
400020	Aluviales del Pisuerga- Carrión y del Arlanza- Arlanzón	59,8	0,1	10	-5,6	-22,7	<u>27,6</u>		41,6	<u>69,2</u>
400021	Sierra de la Demanda	54	0,1	0	-29,4	-5	<u>0</u>		19,7	<u>19,7</u>
400022	Sanabria	53,7	0,2	17	-30,3	-8,1	<u>0</u>		32,5	<u>32,5</u>
400023	Vilardevós- Laza	133,8	0,1	0	-29,7	-20,9	<u>0</u>		83,3	83,3
400024	Valle del Tera	54,7	0,1	60,1	0	-19,5	<u>4,1</u>		95,4	<u>99,5</u>
400025	Páramo de Astudillo	15,4	0,1	0	0	-3,2	0,8		12,3	<u>13,1</u>
400027	Sierras de Neila y Urbión	98,9	0,3	17,6	-40,8	-15,2	<u>0,9</u>		60,8	<u>61,7</u>
400028	Verín	13,5	0	29,7	0	-8,6	<u>0</u>		34,6	<u>34,6</u>
400029	Páramo del Esgueva y del Cerrato	101,3	0,3	0	0	-17,5	<u>3,8</u>		84,1	<u>87,9</u>
400030	Aranda de Duero	106,8	0,3	88,9	-14,7	-25,1	<u>1,5</u>		156,2	<u>157,7</u>
400031	Villafáfila	35,9	0,2	65,9	0	-19,5	<u>1,4</u>		82,5	<u>83,9</u>
400032	Páramo de Torozos	54,4	0,3	0	0	-9,9	<u>2,9</u>		44,8	<u>47,7</u>
400033	Aliste	67,6	0,2	0	0	-13,6	<u>0,2</u>		54,2	<u>54,4</u>
400034	Araviana	18,6	0,1	13,7	-19,9	-3,1	<u>0</u>		9,4	<u>9,4</u>
400035	Cabrejas-Soria	51,7	0,1	12,2	-15,3	-12,2	<u>0</u>		36,5	<u>36,5</u>
400036	Moncayo	8	0	0	-1,5	-1,3	<u>0</u>		5,2	<u>5,2</u>
400037	Cuenca de Almazán	96,4	0,3	35,3	-29,4	-20,5	<u>2,6</u>		82,1	84,7
400038	Tordesillas - Toro	29,8	6,6	60,6	0	-8,7	<u>14,5</u>		88,3	<u>102,8</u>

Código	Nombre	Recarga Lluvia	Infiltración ríos, lagos y embalses	Entradas Laterales	Salidas Laterales	Rest. ambiental	Retorno regadíos	Recarga artificial (Zanjas y balsas)	Recurso natural disponible	Recurso disponible
400039	Aluvial del Duero: Aranda-	20,1	0,4	0	-4,8	-5,7	<u>11,7</u>	Daisas	10	<u>21,7</u>
	Tordesillas			_	_					
400040	Sayago	36,7	0,3	0	0	-7,4	<u>0,6</u>		29,6	<u>30,2</u>
400041	Aluvial del Duero: Tordesillas- Zamora	6,2	38,5	0	-31,7	-1,9	<u>7,2</u>		11,1	<u>18,3</u>
400042	interfluvio Riaza-Duero	33,1	0,1	18,7	0	-8,8	<u>1,8</u>		43,1	<u>44,9</u>
400043	Páramo de Cuéllar	39,4	1,2	0	0	-5,7	<u>5,7</u>		34,9	<u>40,6</u>
400044	Páramo de Corcos	18,8	0,1	0	0	-8,8	<u>0,5</u>		10,1	<u>10,6</u>
400045	Los Arenales - Tierra de Pinares	45,9	20,3	7,4	-5,7	-5,8	<u>11,5</u>	15	62,1	<u>88,6</u>
400046	Sepúlveda	29,7	0,8	32,1	-31,9	-3,5	<u>0</u>		27,2	<u>27,2</u>
400047	Los Arenales - Tierras de Medina y La Moraña	72	23,7	13,9	0	-9,1	<u>43,4</u>		100,5	<u>143,9</u>
400048	Los Arenales - Tierra del Vino	44,3	2,3	9,5	0	-6,3	<u>16,2</u>		49,8	<u>66</u>
400049	Tierras de Ayllón y Riaza	34,5	0,1	12	-19,4	-6,8	<u>0,1</u>		20,4	<u>20,5</u>
400050	Tierras de Caracena - Berlanga	47,2	0,1	0	0	-11,3	<u>0</u>		36	<u>36</u>
400051	Páramo de Escalote	16,1	0	0	0	-2,5	<u>0</u>		13,6	<u>13,6</u>
400052	Salamanca	73	4,4	19,9	0	-20,1	<u>17,6</u>		77,2	94,8
400053	Vitigudino	55,6	0,4	0	-11,9	-14,1	<u>0,1</u>		30	<u>30,1</u>
400054	Guadarrama- Somosierra	46	8,4	0	-40	0	0,2		14,4	<u>14,6</u>
400055	Curso medio del Eresma, Pirón y Cega	53,1	0,2	11,3	-2	-12	<u>2,3</u>		50,6	<u>52,9</u>
400056	Prádena	15,3	0	12	0	-8,8	<u>0</u>		18,5	<u>18,5</u>
400057	Segovia	6,1	0	12	-0,9	-2	<u>0</u>		15,2	<u>15,2</u>
400058	Campo Charro	60,5	0,2	0	0	-12,1	<u>0,5</u>		48,6	<u>49,1</u>
400059	La Fuente de San Esteban	35,2	0,1	33,7	0	-13,8	0,2		55,2	<u>55,4</u>
400060	Gredos	69,6	1,2	0	-30,8	-4,2	<u>1</u>		35,8	<u>36,8</u>
400061	Sierras de Ávila y la Paramera	31,6	0,7	0	-19,9	-1,5	<u>0,1</u>		10,9	<u>11</u>
400063	Ciudad Rodrigo	20,3	0	26,5	0	-9,4	<u>0,4</u>		37,4	<u>37,8</u>
400064	Valle Amblés	13,5	2,5	7,5	0	-4,1	<u>0,2</u>		19,4	<u>19,6</u>
400065	Las Batuecas	86,9	0,8	0	-48,2	-7,9	<u>0</u>		31,6	<u>31,6</u>

Código	Nombre	Recarga Lluvia	Infiltración ríos, lagos y embalses	Entradas Laterales	Salidas Laterales	Rest. ambiental	Retorno regadíos	Recarga artificial (Zanjas y balsas)	Recurso natural disponible	Recurso disponible
400066	Valdecorneja	5	2	5,9	0	-4,6	<u>0,1</u>		8,3	<u>8,4</u>
400067	Terciario Detrítico Bajo Los Páramo	0		60,1	0	0	<u>0</u>		60,1	<u>60,1</u>
TOTAL		4.300	150	1.024,5	-1.024,1	-861	300	15	3.590	3.904

Tabla 76 Componentes del cálculo del recurso disponible [hm³/año]. Fuente: Elaboración propia

Las estimaciones de las transferencias laterales son un término de difícil cálculo que se ha obtenido a partir de la modelación del programa PATRICAL, realizando posteriormente algunos ajustes que reflejen el funcionamiento previsto en la cuenca del Duero según trabajos previos llevados a cabo por el IGME. La finalidad de estos cambios es armonizar los resultados modelados con los contrastados por la piezometría registrada en las masas.

Para cada masa de agua subterránea se ha realizado un balance entre la extracción, que se identifica como el volumen de demandas de origen subterráneo incluido en el anejo 5 de este documento, y el recurso disponible, obteniéndose el índice de explotación (IE) de la masa de agua subterránea, que se muestra en la Tabla 77 y en la Figura 43. El Anejo 5 desarrolla la metodología con la que se han obtenido estos volúmenes de demanda.

Código	Nombre de la masa de agua subterránea	Recurso natural disponible (hm³/año)	Retornos+ recarga en condiciones normales de suministro (hm³/año)	Recurso disponible (hm³/año)	Extracción en condiciones normales de suministro (hm³/año)	Índice de explotación (I.E.)
		[A]	[B]	[A+B]	[C]	[C/(A+B)]
400001	La Tercia-Mampodre-Riaño	204,3	0	204,3	4,11	0,02
400002	La Babia - Luna	119,5	0	119,5	1,32	0,01
400003	Fuentes Carrionas - La Pernía	168,2	0	168,2	1,14	0,01
400004	Quintanilla-Peñahorada-Las Loras	84,3	1,2	85,5	6,19	0,07
400005	Terciario Detríco del Tuerto- Esla	184,5	6,7	191,2	14,9	0,08
400006	Valdavia	160,4	9,1	169,5	6,07	0,04
400007	Terciario Detríco del Esla-Cea	94,3	28,2	122,5	11,24	0,09
400008	Aluviales del Esla-Cea	21,3	14,5	35,8	6,41	0,18
400009	Tierra de Campos	134,8	9,8	144,6	51,1	0,35
400010	Carrión	41,3	5,2	46,5	6,09	0,13
400011	Aluvial del Órbigo	15,8	3,4	19,2	3,77	0,2
400012	La Maragatería	75,3	0,6	75,9	4,2	0,06
400014	Villadiego	40,9	0,2	41,1	1,14	0,03
400015	Raña del Órbigo	16,3	37,6	53,9	2,24	0,04
400016	Castrojeriz	66,1	0,3	66,4	2,07	0,03
400017	Burgos	86,8	0,6	87,4	5,02	0,06
400018	Arlanzón-Río Lobos	80,5	0	80,5	1,01	0,01
400019	Raña de la Bañeza	10,3	0,9	11,2	0,51	0,05
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	41,6	27,6	69,2	20,29	0,29

Código	Nombre de la masa de agua subterránea	Recurso natural disponible (hm³/año)	Retornos+ recarga en condiciones normales de suministro (hm³/año)	Recurso disponible (hm³/año)	Extracción en condiciones normales de suministro (hm³/año)	Índice de explotación (I.E.)
		[A]	[B]	[A+B]	[c]	[C/(A+B)]
400021	Sierra de la Demanda	19,7	0	19,7	0,24	0,01
400022	Sanabria	32,5	0	32,5	1,24	0,04
400023	Vilardevós-Laza	83,3	0	83,3	1,43	0,02
400024	Valle del Tera	95,4	4,1	99,5	3,96	0,04
400025	Páramo de Astudillo	12,3	0,8	13,1	1,97	0,15
400027	Sierras de Neila y Urbión	60,8	0,9	61,7	2,5	0,04
400028	Verín	34,6	0	34,6	0	0
400029	Páramo del Esgueva y del Cerrato	84,1	3,8	87,9	8,57	0,1
400030	Aranda de Duero	156,2	1,5	157,7	9,83	0,06
400031	Villafáfila	82,5	1,4	83,9	10,48	0,12
400032	Páramo de Torozos	44,8	2,9	47,7	15,1	0,32
400033	Aliste	54,2	0,2	54,4	3,93	0,07
400034	Araviana	9,4	0	9,4	0,27	0,03
400035	Cabrejas-Soria	36,5	0	36,5	0,27	0,01
400036	Moncayo	5,2	0	5,2	0,04	0,01
400037	Cuenca de Almazán	82,1	2,6	84,7	4,69	0,06
400038	Tordesillas-Toro	88,3	14,5	102,8	117,94	1,15
400039	Aluvial del Duero: Aranda- Tordesillas	10	11,7	21,7	4,39	0,2
400040	Sayago	29,6	0,6	30,2	5,39	0,18
400041	Aluvial del Duero: Tordesillas- Zamora	11,1	7,2	18,3	3,01	0,16
400042	Interfluvio Riaza-Duero	43,1	1,8	44,9	2,27	0,05
400043	Páramo de Cuéllar	34,9	5,7	40,6	32,69	0,81
400044	Páramo de Corcos	10,1	0,5	10,6	1,71	0,16
400045	Los Arenales - Tierra de Pinares	62,1	26,5	88,6	81,26	0,92
400046	Sepúlveda	27,2	0	27,2	0,92	0,03
400047	Los Arenales - Tierras de Medina y La Moraña	100,5	43,4	143,9	279,48	1,94
400048	Los Arenales - Tierra del Vino	49,8	16,2	66	85,05	1,29
400049	Tierras de Ayllón y Riaza	20,4	0,1	20,5	1,53	0,07
400050	Tierras de Caracena - Berlanga	36	0	36	1,13	0,03
400051	Páramo de Escalote	13,6	0	13,6	0,22	0,02
400052	Salamanca	77,2	17,6	94,8	54,83	0,58
400053	Vitigudino	30	0,1	30,1	4,78	0,16
400054	Guadarrama-Somosierra	14,4	0,2	14,6	2,76	0,19
400055	Curso medio del Eresma, Pirón y Cega	50,6	2,3	52,9	25,95	0,49
400056	Prádena	18,5	0	18,5	0,54	0,03
400057	Segovia	15,2	0	15,2	0,36	0,02
400058	Campo Charro	48,6	0,5	49,1	5,04	0,1
400059	La Fuente de San Esteban	55,2	0,2	55,4	4,2	0,08

Código	Nombre de la masa de agua subterránea	Recurso natural disponible (hm³/año)	Retornos+ recarga en condiciones normales de suministro (hm³/año)	Recurso disponible (hm³/año)	Extracción en condiciones normales de suministro (hm³/año)	Índice de explotación (I.E.)
		[A]	[B]	[A+B]	[C]	[C/(A+B)]
400060	Gredos	35,8	1	36,8	5,52	0,15
400061	Sierras de Ávila y la Paramera	10,9	0,1	11	2,73	0,25
400063	Ciudad Rodrigo	37,4	0,4	37,8	0,83	0,02
400064	Valle Amblés	19,4	0,2	19,6	1,53	0,08
400065	Las Batuecas	31,6	0	31,6	1,64	0,05
400066	Valdecorneja	8,3	0,1	8,4	0,44	0,05
400067	Terciario detrítico bajo los páramos	60,1	0	60,1	31,45	0,52

I.E. 0,8-1 I.E. > 1

Tabla 77. Índice de explotación de las masas de agua subterránea. Fuente: Elaboración propia

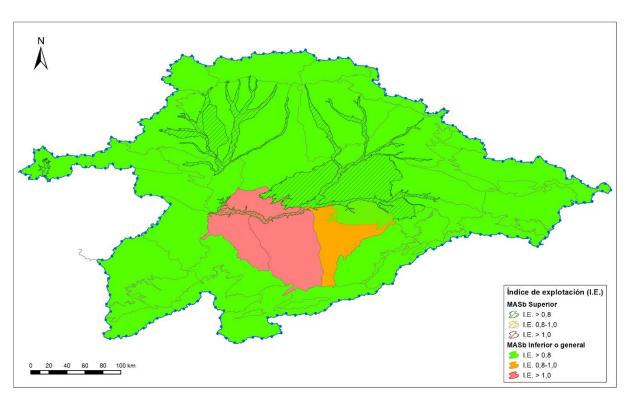


Figura 43. Índice de explotación de la masa o grupo de masas de agua subterránea

El recurso natural disponible en cada masa de agua subterránea se ha obtenido previamente como diferencia entre los recursos renovables (recarga por la infiltración de la lluvia, recarga rechazada y transferencias desde otras masas de agua subterránea) y los flujos medioambientales requeridos para cumplir con el régimen de caudales ecológicos.

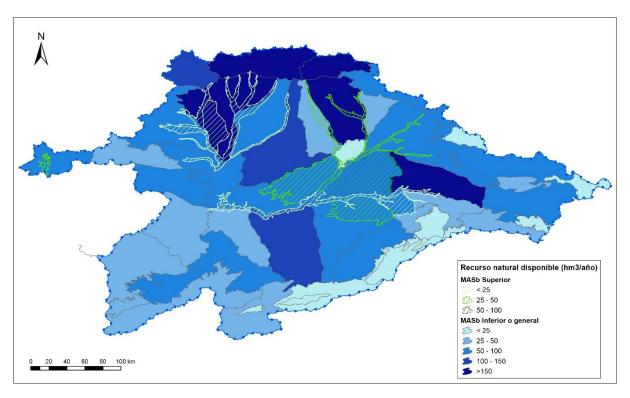


Figura 44. Mapa de la distribución del recurso natural disponible por masa de agua

Como parte de este Test 1 de balances, es necesario conocer también las tendencias piezométricas, que han sido establecidas según el método Mann Kendall para toda la serie histórica de la masa, así como la de los últimos 20 años para poder confirmar la tendencia a medio plazo.

La interpretación de estas tendencias está claramente limitada al volumen de registros históricos disponibles en cada masa, si bien se han considerado una metodología de variaciones anuales que permite aunar a nivel de masa de agua los valores de piezómetros que comienzan a medir en diferentes campañas. De esta manera, si se conoce el comportamiento de cada piezómetro entre dos años distintos, puede promediarse el descenso o ascenso que se produce en ellos en ese lapso de tiempo y estimarlo como la variación general de la masa. Esta media se realiza con los piezómetros disponibles en cada campaña e incorpora los nuevos valores de puntos de control de nueva construcción a partir del segundo año de funcionamiento. Este proceso, al trabajar con variaciones relativas, permite mantener una visión general de la masa desde el inicio de sus mediciones evitando así la irrupción brusca de valores absolutos de nuevos puntos de control en el registro histórico de la masa de agua.

La siguiente figura muestra un ejemplo del análisis de tendencias piezométricas realizado en las masas de agua subterránea.

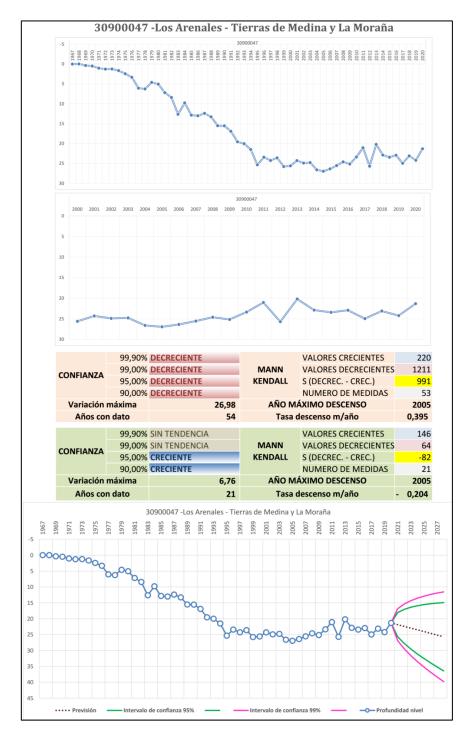


Figura 45. Detalle de establecimiento de tendencias piezométricas en la MSBT 400047

Del resultado de este análisis se observa que un total de 22 MSBT presentarían una tendencia relativamente decreciente a largo plazo con el histórico de datos, de la que finalmente solo 4 de ellas se han considerado significativas. Posteriormente se ha realizado una estimación de la tendencia de la serie a medio plazo (años 2000-2020) y sus tasas de variación para revisar posibles recuperaciones del nivel en algunas de ellas. Junto con el valor del índice de explotación calculado se evalúa el estado de las masas según este test 1 (balances).

Cod.			ia largo pla histórica)	zo		Tendencia medio largo plazo (serie 2000-2020)		Danikadaa		
MSBT	CONF	Tendencia	Tasa descenso (m/año)	Máximo descenso en un año (m)	Tendencia	Tasa descenso (m/año)	Máximo descenso en un año (m)	I.E.	Resultados Test 1	Observaciones
400005	Alta	DECRECIENTE NO SIGNIFICATIVA	0,10	6,25	SIN TENDENCIA	0,03	1,97	0,08	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400006	Alta	DECRECIENTE NO SIGNIFICATIVA	0,09	5,77	SIN TENDENCIA	-0,06	1,50	0,04	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400007	Alta	DECRECIENTE NO SIGNIFICATIVA	0,19	10,87	SIN TENDENCIA	-0,01	0,90	0,09	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años. El IE < 0,8 y las tendencias piezométricas del modelo no son significativas para establecer un mal estado, aunque la previsión es que el descenso continúe.
400009	Alta	DECRECIENTE NO SIGNIFICATIVA	0,14	9,82	CRECIENTE	-0,12	2,53	0,35	Bueno	Tendencia a lago plazo relativamente decreciente, pero con cambio de tendencia en los últimos 20 años. El IE < 0,8 y las tendencias piezométricas del modelo no son significativas. La previsión no es clara.
400010	Alta	DECRECIENTE NO SIGNIFICATIVA	0,09	5,67	SIN TENDENCIA	0,05	1,77	0,13	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400012	Alta	DECRECIENTE NO SIGNIFICATIVA	0,06	6,10	CRECIENTE	-0,08	3,21	0,06	Bueno	Tendencia a lago plazo relativamente decreciente, pero con cambio de tendencia en los últimos 20 años
400014	Alta	DECRECIENTE NO SIGNIFICATIVA	0,11	2,61	DECRECIENTE	0,11	2,61	0,03	Bueno	Tendencias decrecientes, pero con un descenso acumulado muy leve, no se considera significativo
400016	Alta	DECRECIENTE NO SIGNIFICATIVA	0,03	2,66	SIN TENDENCIA	0,00	1,24	0,03	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400017	Alta	DECRECIENTE NO SIGNIFICATIVA	0,15	8,20	SIN TENDENCIA	-0,00	0,92	0,06	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años. El IE < 0,8 y las tendencias piezométricas del modelo no son significativas para establecer un mal estado, aunque la previsión es que el descenso continúe.
400025	Alta	DECRECIENTE NO SIGNIFICATIVA	0,15	1,95	DECRECIENTE	0,15	1,95	0,15	Bueno	Tendencias decrecientes, pero con un descenso acumulado muy leve, no se considera significativo
400030	Alta	DECRECIENTE NO SIGNIFICATIVA	0,09	7,86	SIN TENDENCIA	-0,10	3,16	0,06	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400031	Alta	DECRECIENTE NO SIGNIFICATIVA	0,08	5,18	CRECIENTE	-0,06	2,06	0,12	Bueno	Tendencia a lago plazo relativamente decreciente, pero con cambio de tendencia en los últimos 20 años
400037	Alta	DECRECIENTE NO SIGNIFICATIVA	0,04	3,69	SIN TENDENCIA	0,03	2,69	0,06	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años

Cod.			cia largo pla: e histórica)	zo		a medio largo ie 2000-2020)			Barrier dan	
MSBT	CONF	Tendencia	Tasa descenso (m/año)	Máximo descenso en un año (m)	Tendencia	Tasa descenso (m/año)	Máximo descenso en un año (m)	I.E.	Resultados Test 1	Observaciones
400038	Alta	DECRECIENTE SIGNIFICATIVA	0,32	22,44	SIN TENDENCIA	0,03	5,69	1,15	Malo	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1
400042	Alta	DECRECIENTE NO SIGNIFICATIVA	0,15	8,46	SIN TENDENCIA	0,09	3,70	0,05	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años. El IE < 0,8 y las tendencias piezométricas del modelo no son significativas para establecer un mal estado, aunque la previsión es que el descenso continúe.
400045	Alta	DECRECIENTE SIGNIFICATIVA	0,21	15,53	CRECIENTE	-0,23	4,90	0,92	Malo	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. 0,8-1
400047	Alta	DECRECIENTE SIGNIFICATIVA	0,39	26,98	SIN TENDENCIA	-0,20	6,76	1,94	Malo	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1
400048	Alta	DECRECIENTE SIGNIFICATIVA	0,12	11,28	SIN TENDENCIA	-0,20	5,18	1,29	Malo	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1
400049	Alta	DECRECIENTE NO SIGNIFICATIVA	0,18	11,40	SIN TENDENCIA	0,31	9,10	0,07	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400063	Alta	DECRECIENTE NO SIGNIFICATIVA	0,07	1,11	DECRECIENTE	0,07	1,11	0,02	Bueno	Tendencias decrecientes, pero con un descenso acumulado muy leve, no se considera significativo
400064	Alta	DECRECIENTE NO SIGNIFICATIVA	0,17	12,59	SIN TENDENCIA	-0,05	4,57	0,08	Bueno	Tendencia a lago plazo relativamente decreciente, pero con estabilización en los últimos 20 años
400067	Alta	DECRECIENTE NO SIGNIFICATIVA	0,40	29,95	CRECIENTE	-0,17	8,25	0,52	Bueno	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos, pero con cambio de tendencia en los últimos 20 años. El IE < 0,8 y las tendencias piezométricas del modelo no son significativas.

Tabla 78. Test 1 (Balance hídrico)

La situación cuantitativa de la masa Páramo de Cuéllar (400043) es de difícil evaluación debido a la tipología de acuíferos que alberga y el uso que se hace de sus recursos. La tendencia piezométrica se ve muy influenciada por la climatología anual ya que la incercia del propio acuífero es muy pequeña como es común a los materiales karstificados. Los índices anuales se mueven en un entorno cercano a 0,8, pero la piezometría resultante de los últimos 20 años no muestra descensos apreciables, sino una recuperación desde principios de los años 2000. Debido a estas circunstancias, al no superarse un índice de 1 y no evidenciarse unas tendencias piezométricas descendentes se considera que esta masa supera este test.

Como resultado del Test 1 – Balance hídrico, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado cuantitativo.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 1 (Balance hídrico)
400038	Tordesillas-Toro	General	Malo
400045	Los Arenales - Tierra de Pinares	General	Malo
400047	Los Arenales - Tierras de Medina y La Moraña	General	Malo
400048	Los Arenales - Tierra del Vino	General	Malo

Tabla 79. MSBT con mal estado cuantitativo por el Test 1 (Balance hídrico)

Las tendencias piezométricas con mayores descensos se encuentran en la zona central del Duero, donde las extracciones para usos agrarios son más elevadas. Prueba de estas sobreexplotaciones subterráneas son las afecciones que provocan en las masas de agua superficial, como el descenso de caudales en los ríos o incluso la total desecación de los mismos en sus tramos finales como ocurre en los ríos Trabancos o Zapardiel.

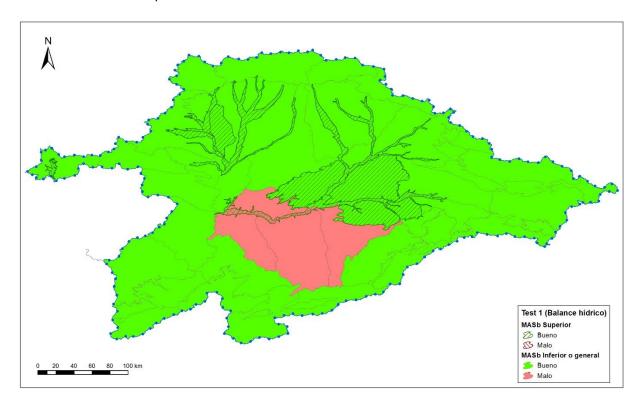


Figura 46. Resultados Test 1 (Balance hídrico)

6.2.2. Test 2: MSPF asociadas a aguas subterráneas, EAAS y mixtos EEAA-ETDAS

Según la Guía de evaluación del estado "Una MSBT se diagnosticará en mal estado cuantitativo cuando sus MSPF asociadas estén en un estado peor que bueno e incumplan el caudal ecológico mínimo, siendo las extracciones de aguas subterráneas una causa significativa de este incumplimiento".

Los resultados de este test se derivan de la identificación de las afecciones que pueden provocar los descensos piezométricos de las masas subterráneas respecto a los caudales superficiales asociados.

De las estaciones con incumplimientos de los caudales ecológicos en el año 2018 /19 según el último informe anual de seguimiento de la DHD del año 2019, se seleccionan las masas en mal estado ecológico o químico que pueden correlacionarse con los descensos piezométricos de las masas de agua que aportan caudal.

La siguiente tabla muestra el listado de las estaciones de aforo con incumplimientos de los caudales ecológicos en el año 2018/19, las masas superficiales relacionadas con su evaluación de estado y la masa subterránea sobre la que se asientan estas masas superficiales. Así, en función del estado de la las masas superficiales y las tendencias piezométricas de las masas de agua subterránea se puede establecer una valoración del estado por este test.

Las masas subterráneas sobre las que se realiza este test no responden totalmente al criterio descrito en la guía de evaluación de afección a más del 20% de los cursos superficiales. Esta salvedad se deriva de la inexactitud de la relación subterránea/superficial de las masas de agua y su influencia sobre los caudales. Por ello, mediante criterio de experto e incluyendo en el estudio masas que metodológicamente no cumplirían con este primer filtro, se estima que las masas que pueden intervenir en los incumplimientos de las masas de agua superficial son:

- 400038 Tordesillas-Toro
- 400045 Los Arenales Tierra de Pinares
- 400047 Los Arenales Tierras de Medina y La Moraña
- 400048 Los Arenales Tierra del Vino

La revisión de la piezometría regional muestra descensos acumulados muy significativos (los mayores de la cuenca en términos históricos), y se encuentra muy plausible la afección a las masas superficiales derivadas de una presión extractiva significativa en el ámbito subterráneo.

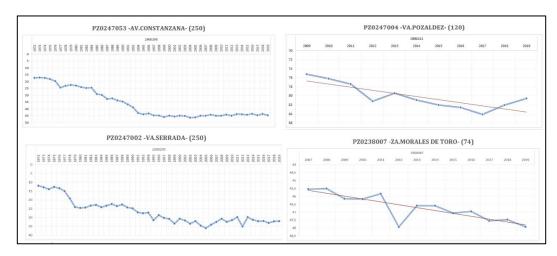


Figura 47. Ejemplos de piezómetros cercanos a los puntos de incumplimiento de caudales ecológicos

Estaciór	tación de aforo con incumplimiento Qecol (2018/2019)				Masa de agua	a superficial		Cod.	Resultados		
Cod. MIRAME	Cod. ROEA	Nombre	Cauce	Cod. MSPF	Nombre MSPF	INDICADOR	ESTADO	MSBT	Test 2	Observaciones	
7500058	2024	Alar del Rey	Pisuerga	30400088	Río Pisuerga 6		Bueno o mejor	400020	Bueno	La MSPF está en buen estado	
				30400422	Río Adaja 9	IPS	Moderado			Tendencias decrecientes a largo plazo	
7500084	2056	Valdestillas	Adaja	Adaja 100 100 10 1 1110 1110 1110 1110 111	400045	Malo	contrastadas y con descensos acumulados				
				30400421	Río Adaja 8	Fosfatos	Moderado	400047		significativos. I.E. 0,8-1 (400045) e I.E. > 1 (400047)	
				30400359	Río Hornija 2	Nitratos	Moderado	400038		Tendencias decrecientes a largo plazo	
7500088	2062	Toro_Duero	Duero	30400395	Río Duero 24	IBMWP	Moderado	400048	Malo	contrastadas y con descensos acumulados significativos. I.E. > 1	
7500095	2077	Emb. Villameca	Tuerto	30400099	Río Tuerto 1		Bueno o mejor	400005	Bueno	La MSPF está en buen estado	
7500117	2111	Villomar	Esla	30400038	Río Esla 5		Bueno o mejor	400008	Bueno	La MSPF está en buen estado	
7500131	2132	Quintanilla de O.	Duero	30400345	Río Duero 17	IBMWP	Moderado	400039	Bueno	No hay una tendencia piezométrica descendente clara en la MSPF, como para afirmar que el mail estado de la MSPF se ve afectada por ésta.	
7500132	2133	Herrera de Pisuerga	Pisuerga	30400090	Río Pisuerga 7		Bueno o mejor	400020	Bueno	La MSPF está en buen estado	
7500150	2158	Arévalo	Adaja	30400450	Río Adaja 6	IPS	Deficiente	400045 400047	Malo	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. 0,8-1 (400045) e I.E. > 1 (400047)	
7500089	2063	Tolibia de Abajo	Curueño	30400823	Río Curueño 2		Bueno o mejor	400001	Bueno	La MSPF está en buen estado	
7500049	2013	Aranda de Duero	Duero	30400825	Río Duero 14	Mercurio	Peor que bueno	400039	Bueno	No hay una tendencia piezométri descendente clara en la MSPF, como pa afirmar que el mail estado de la MSPF se afectada por ésta.	

Tabla 80. Test 2 (MSPF asociadas a aguas subterráneas, EAAS y mixtos EEAA-ETDAS)

Además de los incumplimientos de los caudales ecológicos se deben señalar los casos de los ríos Trabancos y Zapardiel, que discurren sobre los materiales de la masa 400047 Los Arenales - Tierras de Medina y La Moraña, que experimentan periodos de desaparición continuada de su caudal, sobre todo en su parte terminal, y que transcurren por las zonas con mayor descenso piezométrico acumulado de la cuenca que indudablemente afecta a la merma de volumen de los mismos.

Como resultado del Test 2 – MSPF, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado cuantitativo.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 2 (MSPF)
400038	Tordesillas-Toro	General	Malo
400045	Los Arenales - Tierra de Pinares	General	Malo
400047	Los Arenales - Tierras de Medina y La Moraña	General	Malo
400048	Los Arenales - Tierra del Vino	General	Malo

Tabla 81. MSBT con mal estado cuantitativo por el Test 2 (MSPF)

La distribución geográfica de la evaluación de las masas de agua en mal estado cuantitativo respecto a la posible afección subterránea a las masas superficiales y a los ecosistemas terrestres asociados se muestra en la Figura 48.

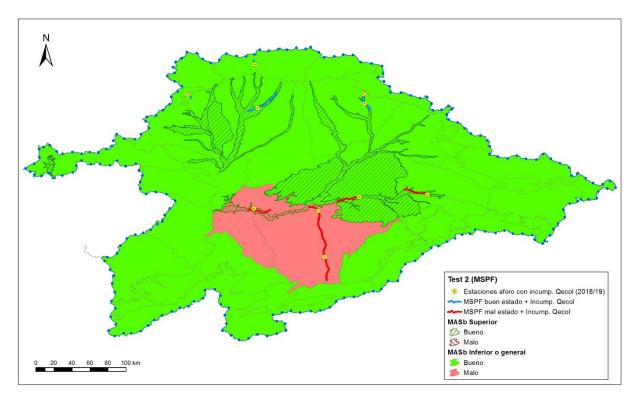


Figura 48. Resultados Test 2 (MSPF)

6.2.3. Test 3: ETDAS (Ecosistemas terrestres dependientes de las aguas subterráneas)

Según la Guía de evaluación del estado "Una MSBT se diagnosticará en mal estado cuantitativo cuando se evidencie que los EDAS hayan sufrido un daño o estén en riesgo e incumplan las necesidades ambientales, siendo las extracciones de aguas subterráneas una causa significativa de este incumplimiento"

En primer lugar, se han identificado los ecosistemas dependientes de las aguas subterráneas para los que se ha podido establecer una relación clara con el nivel freático en las masas con riesgo cuantitativo y que no hayan sido evaluados en el test de relación con las masas de agua superficiales.

La revisión de su estado de conservación muestra que solo uno de ellos tiene una valoración de su estado menor que alto.

Código	Nombre de la masa de agua subterránea	Estado de conservación
ES4190061	Quejigares De La Tierra Del Vino	Medio

Tabla 82. EDAS seleccionados test 4 estado cuantitativo

La correlación existente entre la afección de este sistema y la posible causa del descenso de las aguas subterráneas en esta zona no es definitoria ya que las evoluciones piezométricas no muestran un descenso pronunciado de sus niveles en los piezómetros más cercanos

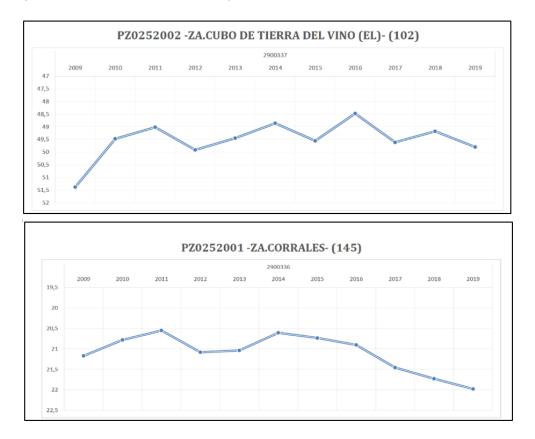


Figura 49. Resultados evolución piezométrica cercana a EDAS en estudio

Como resultado del Test 3 – EDAS, la masa 400048 Los Arenales - Tierra del Vino, supera la evaluación y no se designan masas en mal estado por este test.

6.2.4. Test 4: Salinización y otras intrusiones

Según la Guía de evaluación del estado "Una MSBT se diagnosticará en mal estado cuantitativo cuando en algún punto de control se supere el valor umbral de un parámetro explicativo de la intrusión establecido para esa masa de agua y ello sea coincidente con la existencia de tendencias

ascendentes de este parámetro explicativo o impactos significativos como consecuencia de la intrusión y de la presión por extracciones".

Este test es compartido con el realizado en la evaluación del estado químico, en particular el segundo test de evaluación relativa a la intrusión salina.

Como resultado del Test 4 – Salinización y otras intrusiones, la siguiente tabla muestra las masas de agua que no pasarían el test y por lo tanto estarían en mal estado cuantitativo.

Código	Nombre de la masa de agua subterránea	Horizonte	Estado cuantitativo Test 4 (Intrusión)
400045	Los Arenales - Tierra de Pinares	General	Malo

Tabla 83. MSBT con mal estado cuantitativo por el Test 4 (Intrusión)

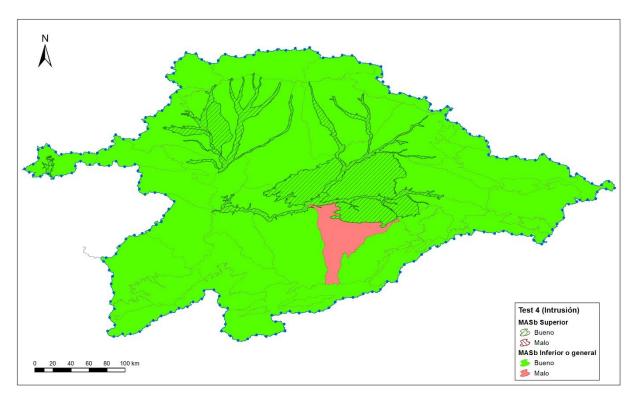


Figura 50. Resultados Test 4 (Intrusión)

6.2.5. Evaluación final del estado cuantitativo

Tras la aplicación de los test anteriores se presenta a continuación la evaluación final del estado cuantitativo de las masas de agua subterránea en la Tabla 84 y Figura 51.

Código	Nombre MSBT	Horizonte	TEST 1 (BALANCE HÍDRICO)	TEST2 (MSPF)	TEST 3 (ETDA)	TEST 4 (INTRUSIÓN)	TOTAL
400001	La Tercia-Mampodre-Riaño	General	Bueno	Bueno	Bueno	Bueno	Bueno
400002	La Babia - Luna	General	Bueno	Bueno	Bueno	Bueno	Bueno
400003	Fuentes Carrionas - La Pernía	General	Bueno	Bueno	Bueno	Bueno	Bueno
400004	Quintanilla-Peñahorada-Las Loras	General	Bueno	Bueno	Bueno	Bueno	Bueno
400005	Terciario Detríco del Tuerto-Esla	General	Bueno	Bueno	Bueno	Bueno	Bueno

Código	Nombre MSBT	Horizonte	TEST 1 (BALANCE HÍDRICO)	TEST2 (MSPF)	TEST 3 (ETDA)	TEST 4 (INTRUSIÓN)	TOTAL
400006	Valdavia	General	Bueno	Bueno	Bueno	Bueno	Bueno
400007	Terciario Detríco del Esla-Cea	General	Bueno	Bueno	Bueno	Bueno	Bueno
400008	Aluviales del Esla-Cea	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400009	Tierra de Campos	General	Bueno	Bueno	Bueno	Bueno	Bueno
400010	Carrión	General	Bueno	Bueno	Bueno	Bueno	Bueno
400011	Aluvial del Órbigo	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400012	La Maragatería	General	Bueno	Bueno	Bueno	Bueno	Bueno
400014	Villadiego	General	Bueno	Bueno	Bueno	Bueno	Bueno
400015	Raña del Órbigo	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400016	Castrojeriz	General	Bueno	Bueno	Bueno	Bueno	Bueno
400017	Burgos	General	Bueno	Bueno	Bueno	Bueno	Bueno
400018	Arlanzón-Río Lobos	General	Bueno	Bueno	Bueno	Bueno	Bueno
400019	Raña de la Bañeza	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400021	Sierra de la Demanda	General	Bueno	Bueno	Bueno	Bueno	Bueno
400022	Sanabria	General	Bueno	Bueno	Bueno	Bueno	Bueno
400023	Vilardevós-Laza	General	Bueno	Bueno	Bueno	Bueno	Bueno
400024	Valle del Tera	General	Bueno	Bueno	Bueno	Bueno	Bueno
400025	Páramo de Astudillo	General	Bueno	Bueno	Bueno	Bueno	Bueno
400027	Sierras de Neila y Urbión	General	Bueno	Bueno	Bueno	Bueno	Bueno
400028	Verín	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400029	Páramo del Esgueva y del Cerrato	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400030	Aranda de Duero	General	Bueno	Bueno	Bueno	Bueno	Bueno
400031	Villafáfila	General	Bueno	Bueno	Bueno	Bueno	Bueno
400032	Páramo de Torozos	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400033	Aliste	General	Bueno	Bueno	Bueno	Bueno	Bueno
400034	Araviana	General	Bueno	Bueno	Bueno	Bueno	Bueno
400035	Cabrejas-Soria	General	Bueno	Bueno	Bueno	Bueno	Bueno
400036	Moncayo	General	Bueno	Bueno	Bueno	Bueno	Bueno
400037	Cuenca de Almazán	General	Bueno	Bueno	Bueno	Bueno	Bueno
400038	Tordesillas-Toro	General	Malo	Malo	Bueno	Bueno	Malo
400039	Aluvial del Duero: Aranda- Tordesillas	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400040	Sayago	General	Bueno	Bueno	Bueno	Bueno	Bueno
400041	Aluvial del Duero: Tordesillas- Zamora	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400042	interfluvio Riaza-Duero	General	Bueno	Bueno	Bueno	Bueno	Bueno
400043	Páramo de Cuéllar	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400044	Páramo de Corcos	Superior	Bueno	Bueno	Bueno	Bueno	Bueno
400045	Los Arenales - Tierra de Pinares	General	Malo	Malo	Bueno	Malo	Malo
400046	Sepúlveda	General	Bueno	Bueno	Bueno	Bueno	Bueno
400047 L	Los Arenales - Tierras de Medina y La Moraña	General	Malo	Malo	Bueno	Bueno	Malo
400048	Los Arenales - Tierra del Vino	General	Malo	Malo	Bueno	Bueno	Malo
400049	Tierras de Ayllón y Riaza	General	Bueno	Bueno	Bueno	Bueno	Bueno
400050	Tierras de Caracena - Berlanga	General	Bueno	Bueno	Bueno	Bueno	Bueno
400051	Páramo de Escalote	General	Bueno	Bueno	Bueno	Bueno	Bueno
400052	Salamanca	General	Bueno	Bueno	Bueno	Bueno	Bueno
400053	Vitigudino	General	Bueno	Bueno	Bueno	Bueno	Bueno
400054	Guadarrama-Somosierra	General	Bueno	Bueno	Bueno	Bueno	Bueno
400055	Curso medio del Eresma, Pirón y Cega	General	Bueno	Bueno	Bueno	Bueno	Bueno
400056	Prádena	General	Bueno	Bueno	Bueno	Bueno	Bueno
400057	Segovia	General	Bueno	Bueno	Bueno	Bueno	Bueno
400058	Campo Charro	General	Bueno	Bueno	Bueno	Bueno	Bueno
400059	La Fuente de San Esteban	General	Bueno	Bueno	Bueno	Bueno	Bueno

Código	Nombre MSBT	Horizonte	TEST 1 (BALANCE HÍDRICO)	TEST2 (MSPF)	TEST 3 (ETDA)	TEST 4 (INTRUSIÓN)	TOTAL
400060	Gredos	General	Bueno	Bueno	Bueno	Bueno	Bueno
400061	Sierras de Ávila y la Paramera	General	Bueno	Bueno	Bueno	Bueno	Bueno
400063	Ciudad Rodrigo	General	Bueno	Bueno	Bueno	Bueno	Bueno
400064	Valle Amblés	General	Bueno	Bueno	Bueno	Bueno	Bueno
400065	Las Batuecas	General	Bueno	Bueno	Bueno	Bueno	Bueno
400066	Valdecorneja	General	Bueno	Bueno	Bueno	Bueno	Bueno
400067	Terciario Detrítico Bajo Los Páramos	General	Bueno	Bueno	Bueno	Bueno	Bueno

Tabla 84. Evaluación del estado cuantitativo

El estado cuantitativo de las masas de agua subterránea se refleja en la siguiente figura.

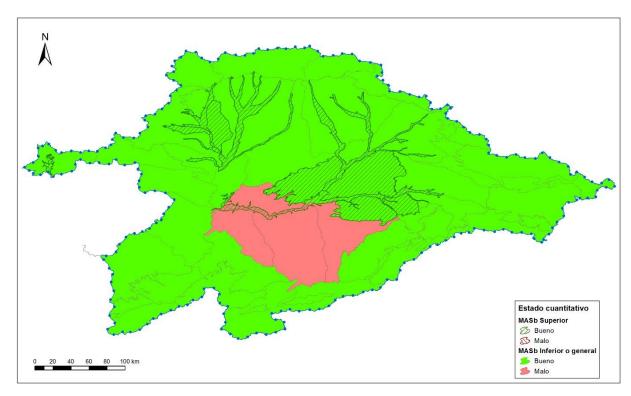


Figura 51. Estado cuantitativo de las masas de agua subterránea

6.2.6. Cambios con respecto al plan 2016-2021

El desarrollo de la nueva normativa al respecto de la evaluación del estado, así como la incorpración de nuevos datos químicos y de piezometría, nuevos puntos de muestreo, etc., son en parte las causas por las que algunas de las masas que se evaluaron en mal estado cuantitativo durante los informes de seguimiento del PHD actualmente se clasifiquen como en buen estado. Este es el caso de la masa de Salamanca, donde una revisión de los datos de extracciones y recursos ha hecho disminuir su índice de explotación por debajo de 0,8 y, pese a que es una zona con elevados volúmenes de extracción y la vigilancia de su evolución es muy estrecha, actualmente su piezometría no es suficientemente clara como para definir la masa en mal estado. La masa del Páramo de Cuéllar se encuentra en una situación similar, con el agravante de superar un índice de 0,8 pero con las incógnitas acerca de la distribución de los volúmenes que se extraen de la masa que se sitúa bajo ella en el horizonte inferior, y la evolución ascendente de su piezometría en los últimos 15 años. Por otra parte las presiones que actúan sobre toda la cuenca no han remitido de forma significativa, por lo

que la evaluación de las masas en mal estado cuantitiativo respecto al anterior ciclo de planificación se mantiene idéntica.

Cádina	Nombre de la masa	TEST		e de la masa TEST			Detalles del incomplications
Código	de agua subterránea	1	2	3	4	Detalles del incumplimiento	
400038	Tordesillas-Toro	х	х			Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1. Adicionalmente se evidencian afecciones sobre las aguas superficiales que pueden provocar los descensos piezométricos de las masas subterráneas respecto a los caudales superficiales asociados a las mismas.	
400045	Los Arenales - Tierra de Pinares	х	х		х	Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. 0,8-1. Adicionalmente se evidencian afecciones sobre las aguas superficiales que pueden provocar los descensos piezométricos de las masas subterráneas respecto a los caudales superficiales asociados a las mismas. También falla el test de intrusión debido a las tendencias crecientes identificadas y al impacto por descenso piezométrico acumulado en la masa.	
400047	Los Arenales - Tierras de Medina y La Moraña	х	x			Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1. Adicionalmente se evidencian afecciones sobre las aguas superficiales que pueden provocar los descensos piezométricos de las masas subterráneas respecto a los caudales superficiales asociados a las mismas.	
400048	Los Arenales - Tierra del Vino	х	x			Tendencias decrecientes a largo plazo contrastadas y con descensos acumulados significativos. I.E. > 1. Adicionalmente se evidencian afecciones sobre las aguas superficiales que pueden provocar los descensos piezométricos de las masas subterráneas respecto a los caudales superficiales asociados a las mismas.	

	Masas con mal estado cuantitativo en el PH3C, que estaban en buen estado químico en el PH2C
	Masas con mal estado cuantitativo en el PH2C , que continúan así en el PH3C

Tabla 85. Evaluación del estado cuantitativo

6.3. Estado global

El estado global de las masas de agua subterránea queda determinado por el peor valor de su estado cuantitativo y de su estado químico. En la Figura 52 se muestra el mapa resultante de estado de las masas de agua subterránea.

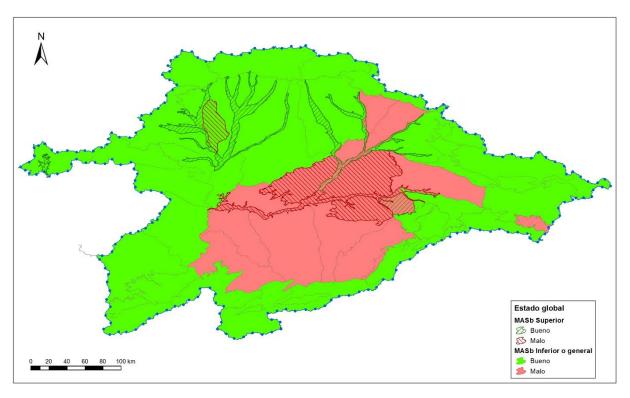


Figura 52. Estado global de las masas de agua subterránea

Como síntesis de los resultados expuestos en los apartados anteriores se presenta en la Tabla 86 un resumen de la situación en que se encuentran las masas de agua subterránea de la parte española de la demarcación del Duero.

Código	Nombre de la masa de agua subterránea	Horizonte	Evaluación del estado cuantitativo	Evaluación del estado químico	Evaluación del estado global
400001	La Tercia-Mampodre-Riaño	General	Bueno	Bueno	Bueno
400002	La Babia - Luna	General	Bueno	Bueno	Bueno
400003	Fuentes Carrionas - La Pernía	General	Bueno	Bueno	Bueno
400004	Quintanilla-Peñahorada-Las Loras	General	Bueno	Bueno	Bueno
400005	Terciario Detríco del Tuerto-Esla	General	Bueno	Bueno	Bueno
400006	Valdavia	General	Bueno	Bueno	Bueno
400007	Terciario Detríco del Esla-Cea	General	Bueno	Bueno	Bueno
400008	Aluviales del Esla-Cea	Superior	Bueno	Bueno	Bueno
400009	Tierra de Campos	General	Bueno	Bueno	Bueno
400010	Carrión	General	Bueno	Bueno	Bueno
400011	Aluvial del Órbigo	Superior	Bueno	Bueno	Bueno
400012	La Maragatería	General	Bueno	Bueno	Bueno
400014	Villadiego	General	Bueno	Malo	Malo
400015	Raña del Órbigo	Superior	Bueno	Malo	Malo
400016	Castrojeriz	General	Bueno	Malo	Malo
400017	Burgos	General	Bueno	Bueno	Bueno
400018	Arlanzón-Río Lobos	General	Bueno	Bueno	Bueno
400019	Raña de la Bañeza	Superior	Bueno	Bueno	Bueno
400020	Aluviales del Pisuerga-Carrión y del Arlanza-Arlanzón	Superior	Bueno	Bueno	Bueno
400021	Sierra de la Demanda	General	Bueno	Bueno	Bueno
400022	Sanabria	General	Bueno	Bueno	Bueno
400023	Vilardevós-Laza	General	Bueno	Bueno	Bueno

Código	Nombre de la masa de agua subterránea	Horizonte	Evaluación del estado	Evaluación del estado	Evaluación del estado
400024	Valle del Tera	General	cuantitativo Bueno	químico Bueno	global
400024	Páramo de Astudillo		Bueno	Malo	Bueno Malo
400023		Superior General	=		
400027	Sierras de Neila y Urbión Verín	General	Bueno Bueno	Bueno Bueno	Bueno Bueno
400028	Páramo del Esgueva y del Cerrato	General	Bueno	Malo	Malo
400029	Aranda de Duero	General	Bueno	Malo	Malo
400030	Villafáfila	General	Bueno	Bueno	Bueno
400031	Páramo de Torozos	General	Bueno	Malo	Malo
400032	Aliste	Superior	Bueno	Bueno	Bueno
400033	Araviana	General	Bueno	Bueno	Bueno
400034	Cabrejas-Soria	Superior	Bueno	Bueno	Bueno
400033		General	Bueno	Bueno	Bueno
400036	Moncayo Cuenca de Almazán	Superior	Bueno	Bueno	Bueno
400037	Tordesillas-Toro	•	Malo	Malo	Malo
400038	Aluvial del Duero: Aranda-Tordesillas	Superior		Malo	Malo
		General	Bueno		
400040	Sayago	General	Bueno	Bueno	Bueno
400041	Aluvial del Duero: Tordesillas-Zamora	General	Bueno	Malo	Malo
400042	Interfluvio Riaza-Duero	General	Bueno	Bueno	Bueno
400043	Páramo de Cuéllar	General	Bueno	Malo	Malo
400044	Páramo de Corcos	General	Bueno	Bueno	Bueno
400045	Los Arenales - Tierra de Pinares	General	Malo	Malo	Malo
400046	Sepúlveda	General	Bueno	Bueno	Bueno
400047	Los Arenales - Tierras de Medina y La Moraña	General	Malo	Malo	Malo
400048	Los Arenales - Tierra del Vino	General	Malo	Bueno	Malo
400049	Tierras de Ayllón y Riaza	General	Bueno	Bueno	Bueno
400050	Tierras de Caracena - Berlanga	General	Bueno	Bueno	Bueno
400051	Páramo de Escalote	General	Bueno	Malo	Malo
400052	Salamanca	General	Bueno	Malo	Malo
400053	Vitigudino	General	Bueno	Bueno	Bueno
400054	Guadarrama-Somosierra	General	Bueno	Bueno	Bueno
400055	Curso medio del Eresma, Pirón y Cega	General	Bueno	Malo	Malo
400056	Prádena	General	Bueno	Bueno	Bueno
400057	Segovia	General	Bueno	Malo	Malo
400058	Campo Charro	General	Bueno	Bueno	Bueno
400059	La Fuente de San Esteban	General	Bueno	Bueno	Bueno
400060	Gredos	General	Bueno	Bueno	Bueno
400061	Sierras de Ávila y la Paramera	General	Bueno	Bueno	Bueno
400063	Ciudad Rodrigo	Superior	Bueno	Bueno	Bueno
400064	Valle Amblés	General	Bueno	Bueno	Bueno
400065	Las Batuecas	General	Bueno	Bueno	Bueno
400066	Valdecorneja	General	Bueno	Bueno	Bueno
400067	Terciario detrítico bajo los páramos	General	Bueno	Malo	Malo

Tabla 86. Evaluación del estado de las masas de agua subterránea

Es decir, que de las 64 masas de agua subterránea, 19 no alcanzan, con la información objetiva actualmente disponible, el buen estado; lo que viene a suponer el 30% del número total de masas de agua. La siguiente tabla muestra la síntesis del estado químico, cuantitativo y global de las MSBT en este tercer ciclo de planificación y su comparativa con los datos del PH2C.

	РН3С							
Horizonte	Estado cuantitativo		Estado químico		Estado global			
	Bueno	Malo	Bueno	Malo	Bueno	Malo		
Superior	12	0	6	6	6	6		
General o inferior	48	4	40	12	39	13		
Total	60	4	46	18	45	19		
	94%	6%	72%	28%	70%	30%		

PH2C										
Estado cuantitativo		Esta quín		Estado global						
Bueno	Malo	Bueno	Malo	Bueno	Malo					
12	0	6	6	6	6					
48	4	43	9	42	10					
60	4	49	15	48	16					
94%	6%	77%	23%	75%	25%					

Tabla 87. Síntesis del estado de las masas de agua subterránea