

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

INFORME TÉCNICO para

Ministerio para la Transición Ecológica

Secretaría de Estado de Medio Ambiente Dirección General del Agua Confederación Hidrográfica del Duero

SERVICIO TÉCNICO PARA EL PROGRAMA DE CONTROL LIMNOLÓGICO BIANUAL INTENSIVO DEL LAGO DE SANABRIA. SEGUIMIENTO DE BLOOMS EN EMBALSES

> SEGUIMIENTO INTENSIVO EN EL EMBALSE DE SERONES (ÁVILA)

> > AVANCE TOMO ÚNICO

Clave CEDEX: 46-415-0-002

Madrid, mayo de 2019

Centro de Estudios Hidrográficos

LOS INFORMES TÉCNICOS DEL CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS (CEDEX) SOLO TIENEN CARÁCTER OFICIAL SI ESTÁN REFRENDADOS POR SU DIRECCIÓN.

INFORME TÉCNICO

para

Ministerio para la Transición Ecológica

Secretaría de Estado de Medio Ambiente Dirección General del Agua Confederación Hidrográfica del Duero

SERVICIO TÉCNICO PARA EL PROGRAMA DE CONTROL LIMNOLÓGICO BIANUAL INTENSIVO DEL LAGO DE SANABRIA. SEGUIMIENTO DE *BLOOMS* EN EMBALSES

SEGUIMIENTO INTENSIVO EN EL EMBALSE DE SERONES (ÁVILA)

AVANCE TOMO ÚNICO

Clave CEDEX: 46-415-0-002 Madrid, mayo de 2019

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

TÍTULO:

SERVICIO TÉCNICO PARA EL PROGRAMA DE CONTROL LIMNOLÓGICO BIANUAL INTENSIVO DEL LAGO SANABRIA. SEGUIMIENTO DE **BLOOMS DE EMBALSES**

SEGUIMIENTO INTENSIVO EN EL EMBALSE DE SERONES (ÁVILA)

AVANCE

CLIENTE:

Ministerio para la Transición Ecológica

Secretaría de Estado de Medio Ambiente Dirección General del Agua Confederación Hidrográfica del Duero

EL PRESENTE INFORME CONSTITUYE UN DOCUMENTO OFICIAL DE ESTE TRABAJO Y, DE ACUERDO CON LAS NORMAS GENERALES DEL ORGANISMO. SU ENTREGA SUPONE EL CUMPLIMIENTO DE LAS ACTUACIONES TÉCNICAS DEL MISMO REFERENTES A LA MATERIA OBJETO DEL INFORME.

VALIDEZ OFICIAL

VISTO EL CONTENIDO DEL INFORME Y SIENDO ACORDE CON LAS CLAUSULAS DEL CONVENIO DE COLABORACIÓN CORRESPONDIENTE, SE PROPONE AUTORIZAR SU EMISIÓN.

EL DIRECTOR DEL CENTRO DE ESTUDIOS HIDROGRÁFICOS

Fdo. Federico Estrada Lorenzo

AUTORIZA LA EMISIÓN DEL INFORME:

Madrid, a 12 de JUNI

EL DIRECTOR DEL CEDExperimentación de Obras Públicas

Fdo. José Trigueros Rodrigo

SÓLO SON INFORMES OFICIALES DEL CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS (CEDEX) LOS REFRENDADOS POR SU DIRECCIÓN.

ÍNDICE GENERAL

1.	AN	TECE	EDENTES	
2.	INT	ROD	UCCIÓN1	
3.	ÁR	EA D	E ESTUDIO	
4.	ME	TOD	OLOGÍA 8	
	4.1.	Tom	na de muestras	8
	4.2.	Aná	lisis de parámetros químicos en agua y sedimentos	. 10
	4.3.		lisis del fitoplancton	
	4.3		Recuento y biovolumen del fitoplancton	
	4.3	.2.	Clorofila a	
	4.3	.3.	Potencial ecológico	. 12
	4.3	.4.	Estado trófico	. 13
	4.3	.5.	Cianobacterias	. 13
5.	Re	sultac	los	
	5.1.	Dina	ámica físico/química de la columna de agua	. 14
	5.1	.1.	Estructura térmica y oxígeno disuelto	. 15
	5.1	.2.	Nutrientes	. 20
	5.1	.3.	Metales	. 24
	5.2.	Quíi	mica del sedimento	. 25
	5.2	.1.	Densidad y materia orgánica	. 25
	5.2	.2.	Nutrientes	. 27
	5.2	.3.	Metales	. 30
	5.3.	Fito	plancton	. 33
	5.3	.1.	Evolución del fitoplancton en 2016	. 33
	5.3	.2.	Evolución histórica del fitoplancton	. 37
	5.3	.3.	Evolución histórica de las cianobacterias	. 39
	5.3	.4.	Potencial ecológico y estado trófico	. 42
	5.3	.5.	Estado trófico	. 43
6.	CC	NCL	JSIONES44	
7.	RE	СОМ	ENDACIONES	
	7.1.	Actu	uaciones para mejorar el conocimiento del embalse	. 49
	7.2.			

MINISTERIO DE FOMENTO PARA LA TRANSICIÓ ECOLÓGICA

SEGUIMIENTO Y ESTUDIO DE BLOOMS DE CIANOBACTERIAS EN VARIOS EMBALSES DE LA CUENCA DEL DUERO. SEGUIMIENTO INTENSIVO EN EL EMBALSE DE SERONES (ÁVILA)

8.	BIBLIOGRAFÍA52
9.	EQUIPO DE TRABAJO56
ANE	EXOS incluidos en el cd adjunto:
ANE:	XO I: Mapa geológico de La zona de estudio
ANE:	XO II: Datos de perfiles con sonda multiparamétrica en 2016
ANE:	XO III: Datos de análisis químicos del agua en 2016
ANE	XO IV: Datos de análisis químicos del sedimento en 2016
ANE	XO V: Datos biológicos de fitoplancton de 2016
ÍND	ICE DE FIGURAS
Figur	ra 1. Embalse y presa de Serones
Figur	ra 2. Cuenca del embalse de Serones (la urbanización "El Castillo" no se llegó a construir) 4
Figur	ra 3. Vista aérea del embalse de Serones y su cuenca 5
Figur	ra 4. Localización de caseríos con uso ganadero en la cuenca del embalse de Serones 6
•	ra 5. Imagen del Caserío Alamillo, con numerosas cabezas de ganado y el embalse de nes al fondo.
de g	ra 6. Imágenes aérea (arriba) y fotográfica (abajo) en las que se aprecian numerosas cabezas anado en el entorno del Caserío de Serones y a lo largo del río Tuerto, a unos 500 m del alse
Figur	ra 7. Localización del punto de muestreo en el embalse de Serones
•	ra 8. Testigos de sedimento superficial obtenidos en la zona de presa del embalse de Serones .), y laminación en el laboratorio (dcha.)
•	ra 9. Perfiles verticales de temperatura (°C) y oxígeno disuelto (mg/l) obtenidos en la zona de a en el embalse de Serones de junio a septiembre de 2016
presa	ra 10. Perfiles verticales de temperatura (°C) realizados por la CHD y el CEH en la zona de a del embalse de Serones durante 2001-2016. Las campañas de muestreo se han agrupado estación del año
del e	ra 11. Perfiles de oxígeno disuelto (mg/l) realizados por la CHD y el CEH en la zona de presa embalse de Serones, durante 2001-2016. Las campañas se han agrupado por estación del
•	ra 12. Concentraciones de nitratos y nitritos en la zona de presa, en fondo y zona fótica, en el alse de Serones, durante las campañas del 2016 (no hay dato de nitrato para el 10/11/16). 20

MINISTERIO DE FOMENTO PARA LA TRANSICIÓN ECOLÓGICA

en el embalse de Serones durante las campañas del 2016
Figura 14. Concentraciones de ortofosfatos y fósforo total en la zona de presa, en fondo y zona fótica, en el embalse de Serones durante las campañas del 201622
Figura 15. Evolución de la concentración en la columna de agua del embalse de Serones (zona fótica y fondo) del PRS (fósforo reactivo soluble) y del NID (nitrógeno inorgánico disuelto) en las campañas realizadas en 2016, respecto a los valores teóricos limitantes para la producción primaria
Figura 16. Concentraciones de Fe, Mn y Al en la zona de presa, en fondo y zona fótica, en el embalse de Serones durante las campañas del 2016
Figura 17. Perfiles de densidad (g/cm³) y materia orgánica (% peso seco) en el testigo de sedimento superficial tomado en la zona de presa del embalse de Serones
Figura 18. Perfiles de nitrógeno total y fósforo total (mg/kg, peso seco) en el testigo de sedimento tomado en la zona de presa del embalse de Serones
Figura 19. Relación de la tasa de liberación de fósforo con el estado trófico de varios lagos seleccionados a nivel mundial (•: media; : intervalo de confianza del 95%;— : Rango). A la derecha del gráfico se indican el número de lagos considerados para cada estado trófico (Nürnberg, 1988).
Figura 20. Contenido de Fe, Al y Mn en el sedimento de la zona de presa del embalse de Serones.
Figura 21. Concentración de clorofila <i>a</i> (μg/l), transparencia con Disco de Secchi y biovolumen (mm³/l) en la zona fótica de la zona de presa del embalse de Serones en el periodo de estudio.34
Figura 22. Composición del fitoplancton entre junio y noviembre de 2016, en la zona de presa (zona fótica y fondo) del embalse de Serones
Figura 23. Composición de las cianobacterias (Nº células/ml y % biovolumen) en la zona fótica de la zona de presa del embalse de Serones, entre junio y noviembre de 2016
Figura 24. Composición del fitoplancton en el embalse de Serones, en presa (en la zona fótica), entre marzo de 2006 y noviembre de 2016 (Datos CHD)
Figura 25. Nº células/mL y biovolumen (mm3/L) de cianobacterias, en la presa (zona fótica) del embalse de Serones, entre 2006 y 2016 (Datos CHD)40
Figura 26. Relación entre el nº de células (izda.) y biovolumen (dcha.) de cianobacterias con la

MINISTERIO PARA DE FOMENTO ECOL

PARA LA TRANSICIÓN ECOLÓGICA

Figura 27. Composición de las cianobacterias, en la presa (zona fótica) del embalse de Serones, entre 2006-2016 (Datos CHD)
Figura 28. Evolución del estado trófico del embalse de Serones durante el periodo 2010-2016. 44
ÍNDICE DE TABLAS
Tabla 1. Datos del embalse de Serones
Tabla 2. Fechas y profundidades de muestreo de las campañas realizadas en el embalse de Serones.
Tabla 3. Material y métodos de conservación de las muestras para los análisis fisicoquímicos y biológicos.
Tabla 4. Parámetros y metodologías analíticas de agua y sedimento empleados en el embalse de Serones.
Tabla 5. Máximo potencial ecológico y límites de cambio de clase de potencial para embalses pertenecientes a la tipología ecológica E-T01 (Fuente: MAGRAMA, 2015)
Tabla 6. Cálculo del TSI (Trophic State Index).
Tabla 7. Clasificación del estado trófico según el valor del índice TSI (Fuente: Carlson, 1977) 13
Tabla 8. Valores guía de biovolumen y número de cianobacterias de la OMS en aguas destinadas a producción de agua potable y en aguas de baño (Chorus & Bartram, 1999)
Tabla 9. Aspectos a tener en cuenta en cada uno de los niveles de alerta y guía señalados en la tabla anterior (Chorus & Bartram, 1999)
Tabla 10. Niveles guía de metales en sedimento. Normativa canadiense (2015) (http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/bc_env_working_water_quality_guidelines.pdf)
Tabla 11. Biovolumen de cianobacterias (mm³/l) en la zona fótica de la presa del embalse de Serones, entre junio y noviembre de 2016
Tabla 12. Indicadores de calidad biológicos y potencial ecológico del embalse de Serones durante el año 2016
Tabla 13. Potencial ecológico del embalse de Serones durante el periodo 2006-2015, considerando los Ratios de Calidad Ecológica (RCE) de cada indicador
Tabla 14. Estado trófico del embalse de Serones durante el año 2016

MINISTERIO DE FOMENTO PARA LA TRANSICIÓN ECOLÓGICA

1. ANTECEDENTES

En algunos embalses de la cuenca del Duero, cada año se desarrollan crecimientos masivos de cianobacterias, llamados *blooms*, que pueden conllevar un riesgo para la salud humana por su potencial de producir diversas toxinas. Es por ello que se recomienda estudiar las circunstancias y condiciones ambientales y limnológicas en las que se produce dicho desarrollo para poder determinar y adoptar medidas adecuadas de prevención y gestión.

De acuerdo con la encomienda de gestión de servicios de la Confederación Hidrográfica del Duero (CHD), del Ministerio para la Transición Ecológica (MITECO), al Centro de Estudios y Experimentación de Obras Públicas (CEDEX), del Ministerio de Fomento, para *el Programa de control limnológico bianual intensivo del lago de Sanabria. Seguimiento de blooms en embalses*, firmada el 3 de junio de 2015, el CEDEX llevará a cabo el seguimiento quincenal durante el periodo estival de algún embalse de la cuenca del Duero en donde se produzcan formaciones de *blooms* de cianobacterias, para poder determinar las condiciones que favorecen su desarrollo o la liberación de determinados compuestos químicos del sedimento cuya presencia constituya un problema para el uso del embalse.

En respuesta a la solicitud recibida de la CHD en el mes de mayo de 2016 de realizar el seguimiento quincenal del embalse de Serones (Ávila), el Centro de Estudios Hidrográficos (CEH) del CEDEX inició los muestreos en esta masa de agua el 23 de junio, finalizando el 10 de noviembre de 2016.

2. INTRODUCCIÓN

Las cianobacterias son un grupo de organismos procariotas fotosintéticos, capaces de vivir en un amplio rango de hábitats, y que en algunos casos son capaces de desarrollar crecimientos masivos o *blooms*. Su gran capacidad de flotación, debido a que poseen unas vesículas de gas, les permite ubicarse en la zona más favorable de la columna de agua (Brookes *et al.*, 2008). No requieren de un gran contenido de nutrientes en el agua ya que son más competitivas por el fósforo en condiciones limitantes y tienen la capacidad de poder fijar el nitrógeno atmosférico. Además de la clorofila *a*, poseen otros pigmentos, las ficobiliproteinas, que les permiten captar luz en el rango de espectro verde, amarillo y naranja, y por tanto, tener mayor posibilidad de absorción en diversas condiciones de luz, propiedad que no suelen poseer las especies de otros grupos de las comunidades fitoplanctónicas (Chorus & Bartram, 1999).

La presencia de cianobacterias, además de perjudicar la calidad del agua, puede resultar muy perjudicial para la salud humana, ya que algunas especies tienen la capacidad de producir cianotoxinas (neurotoxinas, hepatotoxinas o dermatoxinas), que pueden provocar desde molestias (dermatitis, gastroenteritis) hasta enfermedades muy graves, e incluso la muerte. Es por tanto indispensable realizar estudios para conocer las causas y las condiciones ambientales que favorecen su desarrollo, y poder adoptar medidas adecuadas de prevención y gestión en las masas de agua.

En la cuenca del Duero, al igual que en otras demarcaciones hidrográficas, cada año se desarrollan blooms de cianobacterias en diversos embalses, constituyendo un problema de especial

MINISTERIO DE FOMENTO

preocupación en algunos de ellos cuyo uso principal es el abastecimiento a poblaciones, y en ocasiones también como aguas de baño.

Entre los embalses en los que se producen frecuentemente crecimientos masivos de cianobacterias se encuentra el embalse de Serones, en la provincia de Ávila. Desde 2006, se han ido desarrollando en este embalse *blooms* de diferentes especies de cianobacterias. Durante el periodo 2006-2015, las especies más abundantes (en términos de biovolumen) han sido *Aphanizomenon* sp., *Microcystis aeruginosa, Anabaena* sp. y *Dolichospermum* sp. Todas ellas son potencialmente tóxicas ya que pueden producir anatoxinas, microcistinas, cilindrospermopsina y saxitoxinas (*Microcystis aeruginosa* solamente puede desarrollar microcistinas). Durante ese periodo, también se han observado *Aphanocapsa sp.* y *Merismopedia tenuissima*, que aunque podrían ser productoras de microcistinas (Mohamed & Al Shehri, 2010; Somdee *et al.*, 2013), sin embargo no se han incluido en el catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas por su improbable toxicidad en aguas españolas (Ministerio de Medio Ambiente y Medio Rural y Marino, 2011a).

El principal uso del embalse de Serones es el abastecimiento al municipio de Ávila. De acuerdo con las prescripciones técnicas establecidas en la encomienda de gestión de *Programa de control limnológico bianual intensivo del lago de Sanabria. Seguimiento de blooms en embalses*, el Centro de Estudios Hidrográficos del CEDEX ha realizado, a petición de la CHD, un seguimiento quincenal de este embalse durante el verano-otoño de 2016.

En este informe se recogen los resultados obtenidos del seguimiento limnológico del embalse de Serones (Ávila) entre el 23 de junio y el 10 de noviembre de 2016, y su interpretación, comparándose con resultados de seguimientos y otros datos de años anteriores proporcionados por la CHD.

3. ÁREA DE ESTUDIO

El embalse de Serones o Voltoya (Figura 1), está ubicado en los términos municipales de Ojos Albos, Ávila y Santa María del Cubillo (Figura 2). Se construyó en 1988 sobre la cabecera del río Voltoya (Figura 3), tributario del río Eresma. Recibe también aportaciones del río Tuerto (no definido como masa de agua) y de otros pequeños arroyos. Desde 2006 está declarado como zona sensible conforme a lo establecido en el Real Decreto-Ley 11/1995, de 28 de diciembre, por el que se establecen las normas aplicables al tratamiento de las aguas residuales urbanas, que incorpora al ordenamiento interno la Directiva 91/271/CEE, de 21 de mayo, y en el Real Decreto 509/1996, de 15 de marzo, de desarrollo del anterior. Además, está incluido en el "Lugar de Importancia Comunitaria" (LIC) y "Zona de Especial Protección para las Aves" (ZEPA) "Campo Azálvaro-Pinares de Peguerinos" y también en el Catálogo Regional de Zonas Húmedas de Castilla y León. Según el Real Decreto 817/2015 (MAGRAMA, 2015), pertenece a la tipología ecológica E-T01, correspondiente a un embalse monomíctico, silíceo de zonas húmedas, con temperatura media anual menor de 15°C, perteneciente a ríos de cabecera y tramos altos. Su principal uso es el abastecimiento de población (suministra al municipio de Ávila). En la siguiente tabla se muestran sus principales datos y características.

MINISTERIO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS

Tabla 1. Datos del embalse de Serones.

Provincia	Ávila
Municipios	Ojos Albos, Ávila, Santa María del Cubillo
Ríos	Voltoya (tributario principal) y Tuerto
Superficie de cuenca vertiente	108 km²
Superficie del embalse	181,0 ha
Volumen del embalse	6,3 hm ³
Profundidad máxima	10 m
Tomas de agua	5 y 8 m
Aportación media anual	37,19 hm³
Precipitación media anual	741 mm
Uso	Abastecimiento
Población abastecida	29 014 habitantes

La geología de la cuenca del embalse de Serones es mayoritariamente silícea, de arenas litoareníticas y arenas, cantos y gravas arcósicas. Además, existe un porcentaje significativo de granito y adamelitas (Anexo I). La arcosa es arenisca de cuarzo con un mínimo de 25% de feldespato (composición de minerales tectosilicatos y aluminosilicatos). En cuanto a la adamelita, es una roca ígnea con un 65% contenido de sílice, 20% de cuarzo y biotita (filosilicato de hierro y aluminio). Este tipo de geología genera una escorrentía de aguas con un perfil de baja mineralización en condiciones naturales.

Figura 1. Embalse y presa de Serones.

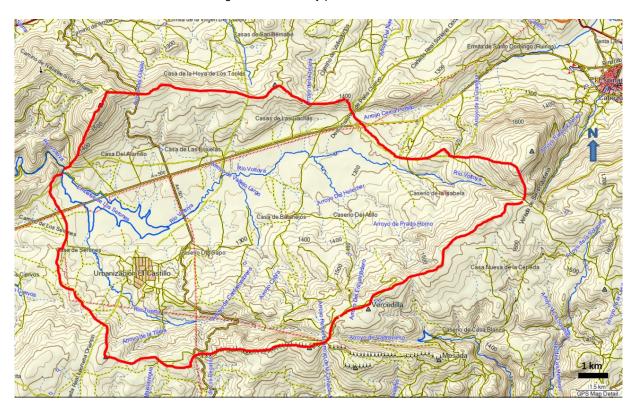


Figura 2. Cuenca del embalse de Serones (la urbanización "El Castillo" no se llegó a construir).

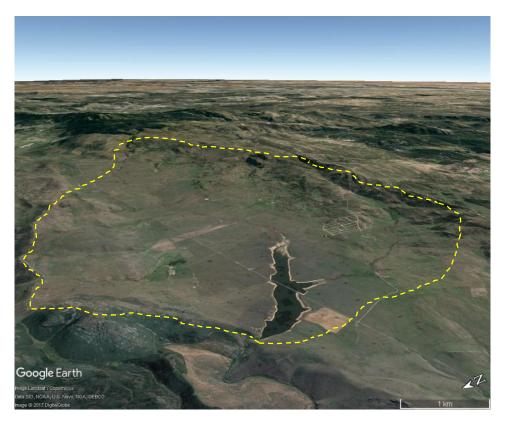


Figura 3. Vista aérea del embalse de Serones y su cuenca.

En lo que se refiere a los usos del suelo en la cuenca del embalse, aunque el 50-75 % de la superficie del municipio donde se encuentra el embalse es cultivo de secano, en el territorio ocupado por la cuenca del embalse apenas existen cultivos. Con respecto a la ganadería, es una zona catalogada con poca afectación (según la Confederación Hidrográfica del Duero, 2015). Sin embargo, en la cuenca del embalse se localizan 10 caseríos con un uso principalmente ganadero (ver Figura 4), estando ubicados algunos en las inmediaciones del embalse (Figura 6 y Figura 5), uno de ellos (caserío de Serones) a menos de 1 km junto al río Tuerto, que forma una de las dos colas del embalse. A *priori*, su presencia podría suponer una afectación significativa por aporte de nutrientes a las aguas del embalse, ya que la mayoría de ellos se localizan en el entorno u orillas de cursos de agua que drenan la cuenca del embalse.

El embalse es coto de pesca de ciprínidos gestionado por la Junta de Castilla y León. Las especies autóctonas que habitan el embalse (información proporcionada por la C.H. Duero) son el barbo (*Barbus bocagei*), bermejuela (*Achondrostoma arcasii*), calandino (*Squalius alburnoides*), bordallo (*Squalius carolitertii*), tenca (Tinca tinca) y gobio (*Gobio lozanoi*), además de dos especies introducidas, la carpa (*Cyprinus carpio*) y el pez gato (*Ameiurus melas*). Según datos de capturas realizadas por la CHD en 2010 (28/07/2010), el 70 % de las mismas correspondió a la carpa, con un total de 150 peces para una superficie de 315 m². El peso medio de las capturas de esta especie fue de 218 g, suponiendo un total de 32,7 kg de biomasa de carpa para esa superficie muestreada, equivalente a un total de 1066 kg/ha, cifra que se correspondería con una población muy densa, y que justificaría la aparición de efectos muy negativos en la calidad del agua del embalse (Huser *et al.*, 2016).

MINISTERIO DE EOMENTO

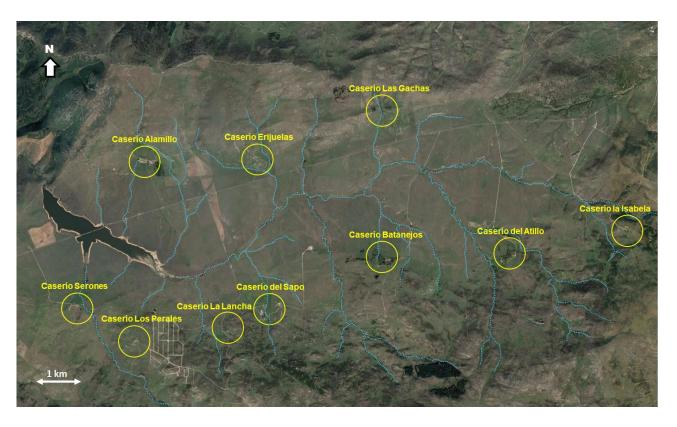


Figura 4. Localización de caseríos con uso ganadero en la cuenca del embalse de Serones.

Figura 5. Imagen del Caserío Alamillo, con numerosas cabezas de ganado y el embalse de Serones al fondo.

Figura 6. Imágenes aérea (arriba) y fotográfica (abajo) en las que se aprecian numerosas cabezas de ganado en el entorno del Caserío de Serones y a lo largo del río Tuerto, a unos 500 m del embalse.

DE FOMENTO

4. METODOLOGÍA

4.1. Toma de muestras

Durante el verano y otoño de 2016, el CEH realizó un seguimiento limnológico mensual del embalse en la zona de máxima profundidad, localizada aproximadamente a 100-150 m de la presa (Figura 7). En la Tabla 2 se recogen las fechas y las profundidades de muestreo en cada campaña limnológica realizada.

En el punto de muestreo seleccionado, se realizaron perfiles verticales con una sonda multiparamétrica EXO 2 de YSI, registrando cada metro la temperatura, oxígeno disuelto, pH, conductividad, turbidez, clorofila a y ficocianina. Además, se midió la transparencia de la columna de agua con el disco de Secchi. Se tomó una muestra de agua integrada desde la superficie hasta una profundidad igual a 2,5 veces la profundidad de visión del disco de Secchi (correspondiente a la zona fótica), otra al final del metalimnion (en aquellos casos en los que se encontró estratificado el embalse) y en el fondo (a 0,3 m sobre el lecho). Para ello se utilizó una botella hidrográfica de tipo Van Dorn. Para la obtención de dichas muestras, se siguió la norma UNE-EN ISO 5667-3 "Parte 3: Conservación y manipulación de las muestras de agua". La Tabla 3 muestra el material y el método de conservación de las muestras utilizado para el análisis de parámetros fisicoquímicos y biológicos.

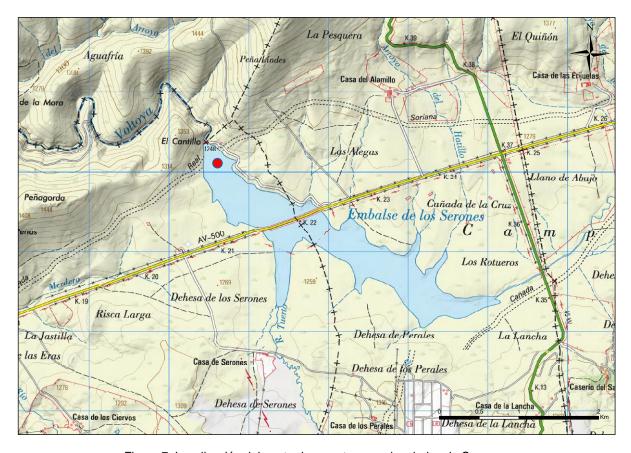


Figura 7. Localización del punto de muestreo en el embalse de Serones.

Tabla 2. Fechas y profundidades de muestreo de las campañas realizadas en el embalse de Serones.

Fecha de muestreo	Profundidad y espesor de la muestra integrada (m) correspondiente a la zona fótica (2,5 x Disco Secchi)	Profundidad máxima en el punto de toma de muestra puntual (m)	
23/06/2016	0 - 3,25	8,0	
25/08/2016	0 - 1,62	7,0	
14/09/2016	0 - 1,87	6,5	
11/10/2016	0 - 2,25	6,5	
10/11/2016	0 - 2,50	6,0	

La filtración de las muestras de agua se realizó *in situ* con filtros de fibra de vidrio de 47 mm Ø y 0,7 μ m de tamaño de poro. Los filtros para el análisis de clorofila a se conservaron en crioviales, transportados en nitrógeno líquido hasta su llegada al laboratorio, donde se almacenaron en un congelador a -78 °C hasta su análisis.

Durante la campaña de noviembre, en la zona de máxima profundidad se tomaron 3 réplicas de testigos de sedimento superficial, de 20 centímetros de longitud aproximadamente, utilizando un corer de gravedad (modelo UWITEC-Kayak) (Figura 8). Dichos testigos se conservaron en posición vertical en oscuridad y a 4°C hasta su laminación en el laboratorio (Figura 8).

Tabla 3. Material y métodos de conservación de las muestras para los análisis fisicoquímicos y biológicos.

Parámetro	Material botella	Filtrado	Conservación
Iones mayoritarios, NO ₂ -, NO ₃ -, NH ₄ +, PO ₄ ³ -	Plástico	SI	Refrigerado en nevera
Fósforo disuelto	Plástico	SI	H ₂ SO ₄ puro
PT, NT	Plástico	NO	H ₂ SO ₄ puro
Metales	Plástico	SI	HNO₃ puro
Fitoplancton	Vidrio topacio	NO	Lugol
Clorofila a	Plástico	SI	Congelación en Nitrógeno líquido

MINISTERIO DE FOMENTO

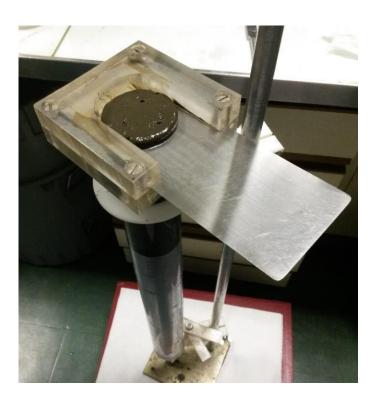


Figura 8. Testigos de sedimento superficial obtenidos en la zona de presa del embalse de Serones (izda.), y laminación en el laboratorio (dcha.).

4.2. Análisis de parámetros químicos en agua y sedimentos

Los análisis de los parámetros químicos se realizaron en el laboratorio del CEH, de acuerdo con el Sistema de Gestión de Calidad certificado bajo la norma UNE-EN ISO 9001:2008.

Para la determinación de los parámetros químicos analizados en los testigos de sedimento se siguió la misma metodología que para las muestras de agua, requiriéndose únicamente una extracción previa. La extracción de fósforo se realizó según el método SMT (Standards Measurements and Testing Programme, Ruban *et al.*, 2001) con calcinación a 450 °C y extracción posterior con ácido clorhídrico 3,5 M. La extracción del nitrógeno se realizó con ácido sulfúrico y peróxido de hidrógeno a 440 °C. Por otro lado, los metales se extrajeron por microondas (Ethos Sel de Millistone) con ácido nítrico y peróxido de hidrógeno. La determinación del nitrógeno y fósforo total se llevó a cabo mediante técnica de microflujo segmentado, con un autoanalizador AxFlow de Seal Analytical, alcanzándose niveles de detección de partes por billón (ppb).

En la Tabla 4 se recopila la metodología analítica empleada para la determinación de cada uno de los parámetros químicos en las muestras de agua y sedimento.

Tabla 4. Parámetros y metodologías analíticas de agua y sedimento empleados en el embalse de Serones.

Parámetro	Método	Analizado en agua	Analizado en sedimento
рН	Floatrometria	X	
Conductividad	Electrometría	X	
Fluoruros		Χ	
Cloruros		Χ	
Nitritos		Χ	
Nitratos	Cromatografía iónica	Χ	
Bromuros		X	
Ortofosfatos		X	
Sulfatos		X	
Nitrógeno total		X	X
Fósforo total	Espectrofotometría de microflujo segmentado	X	X
Fósforo disuelto		X	
Bicarbonatos	Volumetría	Χ	
Carbonatos	volumetra	Χ	
Calcio		Χ	
Magnesio	Emisión atómica con ICP	Χ	
Sodio	óptico	Χ	
Potasio		Χ	
Amonio	Espectrofotometría	X	
Materia orgánica	Secado, calcinación y pesada		X
Aluminio		Χ	X
Arsénico		X	X
Bario	Emisión atómica con ICP	Χ	X
Berilio	óptico	X	X
Boro		X	
Cadmio		X	X
Cinc		X	X
Cobalto		Х	X
Cobre		X	X
Cromo		Х	X
Hierro	Emisión atómica con ICP	X	X
Manganeso	óptico	X	X
Níquel		Х	X
Plomo		X	X
Selenio		X	X
Vanadio		X	X

MINISTERIO DE FOMENTO

4.3. Análisis del fitoplancton

4.3.1. Recuento y biovolumen del fitoplancton

Los recuentos del fitoplancton se han realizado mediante el método de Utermöhl (1958). Se han utilizado los biovolúmenes celulares que figuran en el "Tesauro Taxonómico para la clasificación del estado ecológico de las masas de agua continentales" (TAXAGUA) y con los criterios marcados en el protocolo: https://www.miteco.gob.es/es/agua/temas/estado-y-calidad-de-las-aguas/aguas-superficiales/programas-seguimiento/TAXAGUA.aspx

4.3.2. Clorofila a

La extracción de la clorofila *a* se realizó con una solución acuosa de acetona al 90 % y se determinó la absorbancia del extracto por espectrofotometría. Para el cálculo de la concentración se utilizó la fórmula de Jeffrey y Humphrey (1975) según el "Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses, código: MFIT-2013, versión 2" del MITECO (https://www.miteco.gob.es/es/agua/temas/estado-y-calidad-de-las-aguas/aguas-superficiales/programas-seguimiento/Protocolos-de-muestro-laboratorio-y-calculo-de-indices.aspx).

4.3.3. Potencial ecológico

Para el cálculo del potencial ecológico, se considera como valor anual de cada métrica la media de los valores obtenidos para cada una de ellas en los muestreos realizados entre julio y septiembre (datos de la muestra integrada en la zona fótica), según el protocolo de muestreo del MITECO (https://www.miteco.gob.es/es/agua/temas/estado-y-calidad-de-las-aguas/aguas-superficiales/programas-seguimiento/Protocolos-de-muestro-laboratorio-y-calculo-de-indices.aspx)

Se ha calculado el Ratio de Calidad Ecológica (RCE) para cada una de las métricas con el fin de poderlas comparar con los límites de cambio de clase del potencial ecológico. La Tabla 5 muestra los valores de las métricas para el máximo potencial ecológico y los límites de cambio de clases de potencial para embalses pertenecientes a la tipología ecológica E-T01, tal como viene recogido en el Real Decreto 817/2015 (MAGRAMA, 2015).

Tabla 5. Máximo potencial ecológico y límites de cambio de clase de potencial para embalses pertenecientes a la tipología ecológica E-T01 (Fuente: MAGRAMA, 2015).

		Límites de cambio de clase de estado RCE		
Indicador	Máximo potencial ecológico	Bueno o superior/moderado	Moderado/deficiente	Deficiente/malo
IGA	0,10	0,974	0,649	0,325
% cianobacterias	0,0 %	0,908	0,607	0,303
Clorofila a	2,00 mg/m ³	0,211	0,14	0,07
Biovolumen	0,36 mm³/L	0,189	0,126	0,063

DE FOMENTO

4.3.4. Estado trófico

Para la determinación del estado trófico se ha calculado el Indice de Carlson, o TSI (Trophic State Index) (Carlson, 1977), teniendo en cuenta los valores medios del disco de Secchi, clorofila *a* y fósforo total en la muestra integrada correspondiente a la zona fótica, obtenidos entre julio y septiembre. Dicho índice se calcula según las funciones indicadas en la Tabla 6, y en la Tabla 7 se muestra la clasificación del estado trófico según el valor del índice TSI que se obtenga.

Tabla 6. Cálculo del TSI (Trophic State Index).

Parámetro	Función
Disco de Secchi (m)	TSI (Disco de Secchi) = 60 - 14,41* In (Disco de Secchi)
Clorofila a (μg/l)	TSI (Clorofila a) = 9,81*ln (Clorofila a) + 30,6
Fósforo total (μg/l)	TSI (Fósforo total) = 14,42* In (Fósforo total) + 4,15
TSI media	TSI media = (TSI(Disco de Secchi) + TSI (Clorofila a) + TSI (Fósforo total))/3

Tabla 7. Clasificación del estado trófico según el valor del índice TSI (Fuente: Carlson, 1977).

Nivel trófico	TSI
Oligotrofia	<30
Oligo-mesotrofia	30-40
Mesotrofia	40-50
Eutrofia moderada	50-60
Eutrofia	60-70
Eutrofia elevada	70-80
Hipereutrofia	>80

4.3.5. Cianobacterias

Además del porcentaje de cianobacterias utilizado para el cálculo del potencial ecológico, la Organización Mundial de la Salud (OMS) ha establecido unos valores de nivel de alerta en aguas destinadas a la producción de agua potable y unos valores guía para las aguas de baño, considerando el número de células y el biovolumen de cianobacterias (Tabla 8) (Chorus & Bartram, 1999). En la Tabla 9 se muestran los aspectos que hay que tener en cuenta según la OMS en cada uno de los niveles de alerta y guía señalados en la Tabla 8.

Se han comparado los resultados obtenidos durante el año 2016 y los de años anteriores, proporcionados por la CHD, con los niveles establecidos por la OMS. Igualmente, se ha realizado un estudio histórico de la composición de las cianobacterias durante el periodo 2006-2016.

MINISTERIO DE FOMENTO

Tabla 8. Valores guía de biovolumen y número de cianobacterias de la OMS en aguas destinadas a producción de agua potable y en aguas de baño (Chorus & Bartram, 1999).

Aguas destinadas a la producción de agua potable	Aguas de baño	Biovolumen de cianobacterias (mm³/L)	Nº células de cianobacterias/mL
Nivel de vigilancia		0,02	200
Nivel de alerta I		0,2	2000
	Nivel guía I	2	20000
Nivel de alerta II	Nivel guía II	10	100000

Tabla 9. Aspectos a tener en cuenta en cada uno de los niveles de alerta y guía señalados en la tabla anterior (Chorus & Bartram, 1999).

Nivel de alerta o guía	Aspectos a tener en cuenta
Nivel de vigilancia	Constituye un aviso de posibilidad de formación de un <i>bloom</i> . Cuando se sobrepasa el nivel de vigilancia es apropiado aumentar la frecuencia de muestreo.
Nivel de alerta I	Es el biovolumen de cianobacterias donde la concentración de microcistinas en el agua podría exceder el nivel guía de la OMS para microcistinas-LR (1 μg/L), asumiendo que se trata de especies productoras de microcistinas. Requiere una consulta a las autoridades sanitarias y un análisis de toxinas en el agua de consumo.
Nivel de alerta II	Con la presencia de toxinas confirmadas describe un <i>bloom</i> tóxico que indica un incremento significativo de riesgo de efectos adversos para la salud si el agua no es tratada o es tratada con un sistema ineficaz.
Nivel guía I	Indica bajas probabilidades de efectos adversos para la salud, debido principalmente a las irritaciones y alergias que pueden producir los componentes de las cianobacterias. Se recomienda informar a los bañistas del peligro.
Nivel guía II	Indica moderadas probabilidades de efectos adversos para la salud. La posibilidad de síntomas de irritación de la piel son elevadas y a estas concentraciones de cianobacterias, las concentraciones de toxinas pueden ser altas (hasta 20 veces el nivel recomendado por la OMS). En estos casos la restricción del baño puede ser apropiada.

5. RESULTADOS

5.1. Dinámica físico/química de la columna de agua

Los datos obtenidos en los perfiles verticales realizados con sonda multiparamétrica en cada campaña y los resultados de los análisis químicos realizados por el laboratorio del CEH se recogen en los Anexos II y III.

MINISTERIO MINISTE

5.1.1. Estructura térmica y oxígeno disuelto

De forma general, y atendiendo a la clasificación limnológica revisada y establecida por Lewis (1983) para el régimen de estratificación de los lagos, el embalse de Serones constituiría una masa de agua de tipo *monomíctico templado*. No obstante, su carácter somero hace que en determinados años la estratificación estival tenga un periodo relativamente corto o sea poco acusada, tal y como se describe más adelante. Los perfiles obtenidos durante las 5 campañas realizadas entre junio y noviembre de 2016 en la zona de presa se muestran en la Figura 9.



Figura 9. Perfiles verticales de temperatura (°C) y oxígeno disuelto (mg/l) obtenidos en la zona de presa en el embalse de Serones de junio a septiembre de 2016.

MINISTERIO F DE FOMENTO E

A finales de junio, la estabilidad de la columna de agua del embalse refleja el aumento de la temperatura del aire, y por tanto, de la capa superficial del agua, unido a una disminución o ausencia de lluvias en las semanas anteriores, observándose una ligera estratificación térmica con una termoclina poco acusada cercana al fondo de la cubeta (5-6 metros de profundidad) (Figura 9). Aunque no se dispone de datos de la estructura térmica de la columna de agua de finales de junio a finales de agosto, la mayor homogeneidad térmica observada a finales de agosto, con la termoclina prácticamente desaparecida respecto a los datos observados a finales de junio, apunta a una gran facilidad de mezcla de las aguas de este embalse como respuesta a factores externos. Pueden ser eventos fuertes de precipitación o vientos, frecuentes en esta zona de orografía libre de obstáculos, y que pueden mezclar fácilmente la columna entera de agua en unas pocas horas debido a la escasa profundidad máxima del embalse (7,8 m en el periodo de estudio) y la existencia de un "fetch" significativo (longitud recta máxima de la superficie que es batida predominantemente por el viento sin obstáculos).

La descomposición de la materia orgánica sedimentada que tiene lugar cuando se forma el hipolimnion, ocasiona un consumo de oxígeno que no es compensado debido a la dificultad de intercambio entre las capas superficial y profunda durante las semanas que dure la estratificación estival. Este proceso se ve reflejado en la formación de una oxiclina marcada, detectándose a finales de agosto condiciones anóxicas en el último metro (Figura 9), a pesar de que térmicamente la columna de agua sea más homogénea en esa fecha. Sin embargo, en la campaña de septiembre, la temperatura del agua y el oxígeno disuelto vuelven a ser homogéneos en toda la columna de agua, probablemente debido a la ocurrencia de tormentas otoñales y vientos fuertes más frecuentes que provocan una fuerte mezcla de toda la columna de agua.

Para analizar la evolución a lo largo del tiempo, se han comparado los perfiles de temperatura y oxígeno disuelto obtenidos en 2016 con datos aportados por la CHD durante el periodo 2001-2014 (Figura 10 y Figura 11). Para ello, se han agrupado por estación del año (primavera, verano y otoño). Además de no disponer de perfiles en invierno, no se tienen datos en todas las campañas para las 3 estaciones del año (ej. año 2007). En esos casos no es posible observar y analizar con detalle la evolución intraanual de la temperatura y del oxígeno disuelto en la columna del agua.

En verano, la temperatura del aire alcanza su valor máximo, coincidiendo generalmente con las aportaciones de caudal y precipitaciones más bajas del año, produciéndose la estratificación del embalse. En 2016 se observa que el patrón de la evolución de la temperatura es muy similar al de años anteriores, representativo de un embalse típicamente monomíctico, con un único periodo, el verano, en el que se produce una estratificación de la columna de agua. A inicios de la primavera, generalmente la temperatura todavía se mantiene constante en toda la columna de agua, aunque algunos años empieza a apreciarse ya sutilmente una incipiente estratificación (ej. 2008 y 2013). Presumiblemente en estos años la temperatura del aire debió de ser superior y las condiciones meteorológicas más estables, lo que pudo acelerar la formación de la termoclina. En general, con el aumento progresivo de la temperatura del aire, las capas superiores del embalse se van calentando y empieza a formarse una termoclina a finales de primavera. El año 2007, por el contrario, pudo ser un año o bien más frío con temperaturas del aire inferiores a la media, o con una mayor inestabilidad meteorológica en los meses de verano, ya que la columna de agua del embalse permaneció mezclada en las campañas realizadas en el periodo estival (Figura 11).

MINISTERIO MINISTERIO
DE FOMENTO PARA LA TRANSICIÓN
ECOLÓGICA

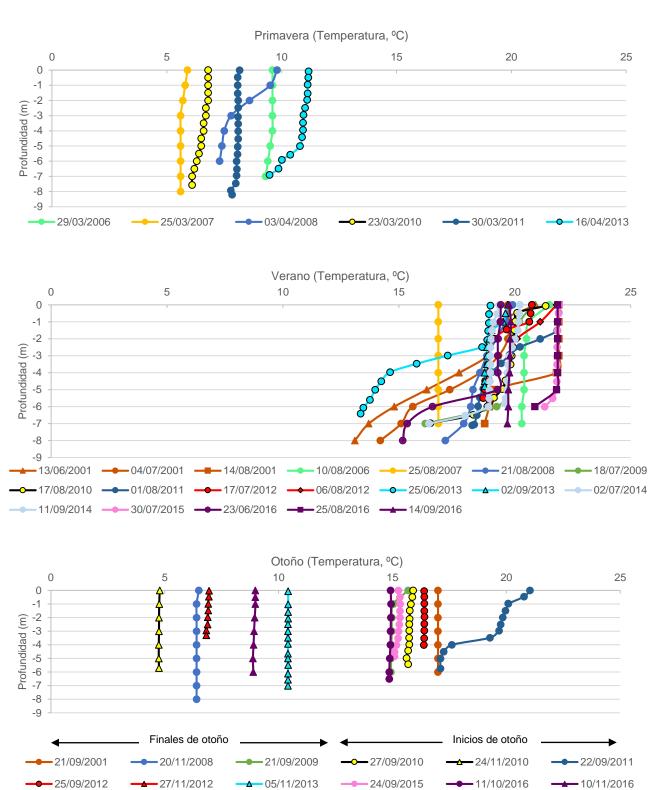


Figura 10. Perfiles verticales de temperatura (°C) realizados por la CHD y el CEH en la zona de presa del embalse de Serones durante 2001-2016. Las campañas de muestreo se han agrupado por estación del año.

DE FOMENTO

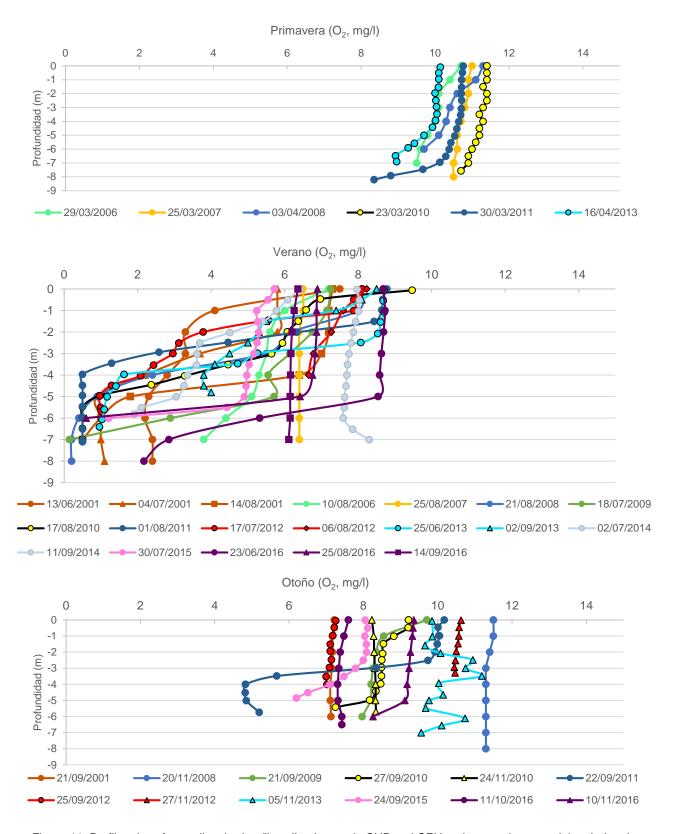


Figura 11. Perfiles de oxígeno disuelto (mg/l) realizados por la CHD y el CEH en la zona de presa del embalse de Serones, durante 2001-2016. Las campañas se han agrupado por estación del año.

Cuanto mayor es la temperatura del aire y menores son las aportaciones y precipitaciones, la termoclina tiende a formarse más próxima a la superficie, y la temperatura disminuye a lo largo de la profundidad de manera más drástica (ej.; agosto 2008, julio 2012 y junio 2013) (Figura 10). La estructura térmica de comienzos del verano de 2016 ha sido muy similar al 2001, cuando se formó una marcada termoclina temprana a finales de junio en torno a los 5-6 metros, aunque en aquel año se mantuvo durante julio y agosto, mientras que en 2016 se debilitó mucho a lo largo del verano. En el verano de 2007 se produjo una mezcla total de la temperatura a lo largo de la columna de aqua en el mes de agosto, probablemente debido a la ocurrencia de fuertes tormentas (Figura 10). En otoño el patrón es muy similar en la mayoría de los años, como consecuencia de la llegada de las precipitaciones y la bajada de la temperatura del aire, época en la que el embalse se mezcla totalmente, salvo excepciones como el otoño de 2011, en el que la estratificación, además de iniciarse muy tempranamente, se prolongó excepcionalmente durante el mes de septiembre, probablemente por ser un otoño más caluroso y menos lluvioso. La disponibilidad de datos meteorológicos locales (temperatura del aire, precipitaciones, viento) y de datos hidrológicos (caudales de entrada) de la cuenca permitiría analizar y relacionar mejor la evolución de la temperatura del agua a lo largo del año con las condiciones climáticas e hidrológicas, definiendo patrones con mayor precisión.

En líneas generales, sobre un patrón generalizado de la evolución de la estructura térmica del embalse, se observa una gran variabilidad interanual en los valores absolutos de la temperatura, con diferencias frecuentes de hasta 10 °C para un mismo patrón y fechas, lo que refleja la gran sensibilidad de la masa de agua a los factores meteorológicos e hidrológicos externos y la escasa o nula inercia térmica frente a ellos, en comparación con otros embalses de mayor volumen y profundidad. Este aspecto puede dificultar la predicción y obtención de respuestas deseadas en la calidad del agua frente a la aplicación de determinadas medidas o actuaciones en la gestión del embalse.

Aunque la resolución temporal disponible de la serie de datos históricos no lo refleja, es posible que algún año el embalse se comporte como una masa de agua polimíctica, situación característica de embalses poco profundos en zona templadas (Holdren *et al.*, 2001), en la que se estratificaría durante el verano por periodos de tiempo relativamente cortos con calma y temperaturas del aire elevadas, mezclándose esporádicamente durante algunos días con ocurrencia de vientos o precipitaciones fuertes y continuas.

Al igual que sucede con la temperatura, el patrón de la evolución estacional del oxígeno muestra un comportamiento similar en el año 2016 con respecto a los años anteriores con alguna excepción. El inicio de la formación de la termoclina a finales de la primavera dificulta el intercambio de oxígeno entre las capas superiores e inferiores, lo que provoca que poco a poco se forme una oxiclina (Figura 11). En general, se observa que en el embalse de Serones comienza a observarse un consumo de oxígeno disuelto en los metros más profundos a finales de primavera. Conforme transcurre el verano, el oxígeno en las capas profundas se va consumiendo debido fundamentalmente a la descomposición de la materia orgánica, lo que conlleva que se alcancen incluso condiciones anóxicas desde profundidades medias (en general, para todos los años se obtienen concentraciones de oxígeno próximas a cero o inferiores a 2 mg/l a partir de 5 metros) (Figura 11). Especialmente significativos han sido los veranos de los años 2007, con una mezcla temprana de

MINISTERIO

sus aguas en el mes de agosto, y 2011, en el que sucedió lo contrario, prolongándose el agotamiento de oxígeno hipolimnético hasta el mes de septiembre, en ambos casos probablemente debido a condiciones meteorológicas e hidrológicas singulares y diferentes de las habituales. De forma general, con la llegada de las lluvias y descenso térmico otoñal, se produce la mezcla y por tanto, al igual que sucedía con la temperatura, el oxígeno vuelve a ser constante y a aumentar a lo largo de la columna de agua.

5.1.2. Nutrientes

Durante el periodo estudiado en 2016, las concentraciones de los compuestos de nitrógeno presentan valores muy bajos, muy por debajo de los niveles de calidad establecidos para aguas de consumo humano (Ministerio de la Presidencia, 2003). En todas las campañas se han obtenido concentraciones de nitratos inferiores a 0,2 mg/l NO₃- (Figura 12).

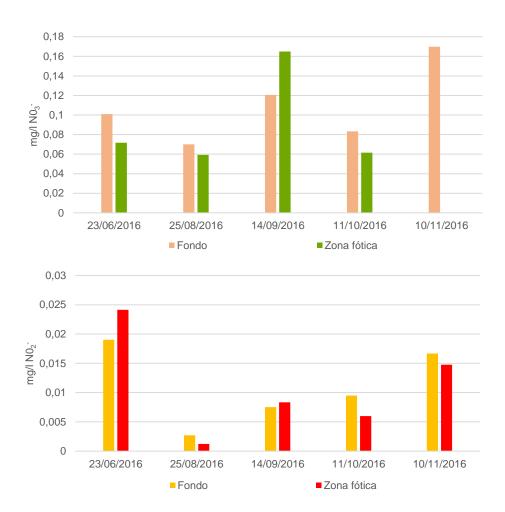


Figura 12. Concentraciones de nitratos y nitritos en la zona de presa, en fondo y zona fótica, en el embalse de Serones, durante las campañas del 2016 (no hay dato de nitrato para el 10/11/16).

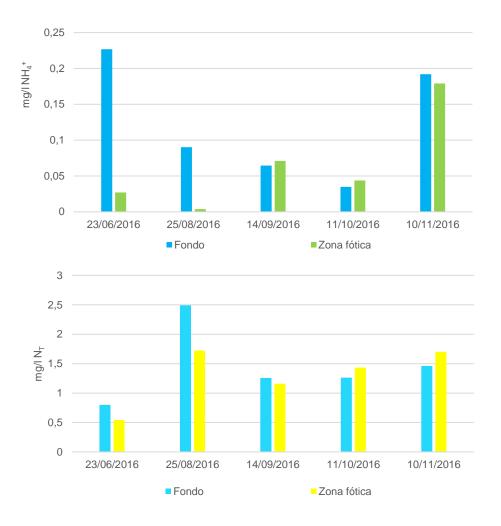


Figura 13. Concentraciones de amonio y nitrógeno total en la zona de presa, en fondo y zona fótica, en el embalse de Serones durante las campañas del 2016.

Por otro lado, el contenido de nitritos en agua es generalmente bajo (Figura 12). Es un compuesto inestable por lo que rápidamente se transforma a nitratos o a N_2 en condiciones oxidantes o reductoras, respectivamente. Cuando el embalse está estratificado y se tiene un hipolimnion anóxico, se produce la desnitrificación, lo que disminuye el nivel de nitritos en el agua.

Aunque el amonio es un producto de la excreción de animales acuáticos, se produce fundamentalmente por descomposición de materia orgánica por bacterias heterotróficas (Wetzel, 2001), constituyendo una fuente relevante de nitrógeno para la producción biológica planctónica. En la campaña de junio se observa un valor mayor de amonio en el fondo (Figura 13). En situaciones de estratificación de la columna, la concentración de amonio es mayor en el hipolimnion, bajo condiciones cercanas a la anoxia, que en las capas superficiales del embalse. En esas condiciones con bajo contenido de oxígeno, los procesos de nitrificación de amonio a nitritos/nitratos cesan, y la capacidad de adsorción del amonio en el sedimento disminuye, liberándose a la columna de agua (Wetzel, 2001). En el mes de noviembre volvió a producirse un incremento en la concentración de este compuesto, cuando la columna de agua se encontraba mezclada y oxigenada en su totalidad, lo que podría significar una entrada externa de amonio proveniente de la cuenca.

MINISTERIO DE FOMENTO

En la Figura 14 se observa la concentración de ortofosfatos y fósforo total obtenida en la zona de presa, durante las campañas de muestreo de 2016.

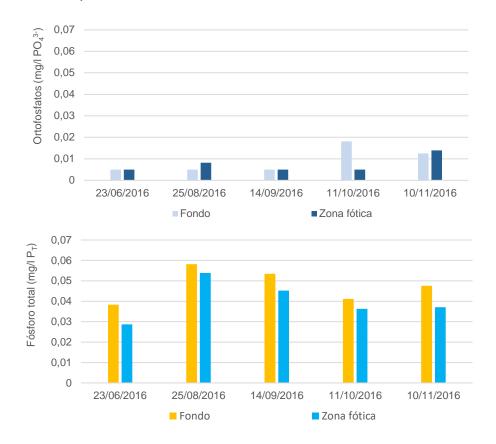


Figura 14. Concentraciones de ortofosfatos y fósforo total en la zona de presa, en fondo y zona fótica, en el embalse de Serones durante las campañas del 2016.

Entre junio y noviembre de 2016, la concentración de ortofosfatos es inferior a 0,01 mg/l (Figura 14). Generalmente, el fósforo suele ser el nutriente limitante para el crecimiento de plantas acuáticas, siendo PO_4^{3-} la forma disponible. Bajo condiciones de eutrofia, la concentración de ortofosfatos en la columna de agua puede mostrar valores bajos, ya que las algas y las bacterias lo asimilan rápidamente para su crecimiento. En el embalse de Serones, menos del 1% del fósforo total se encuentra en forma de ortofosfatos (Figura 14). Esto significaría que la mayoría del fósforo total estaría en forma orgánica y adsorbido en partículas en suspensión, además de en el sedimento.

La concentración de fósforo total es ligeramente superior en las capas inferiores del embalse (Figura 14), aunque no la de ortofosfatos, apuntando a una mayor presencia de este elemento en forma orgánica. Los procesos de descomposición de la materia orgánica requieren consumo de oxígeno, favoreciendo por tanto que haya unas condiciones reductoras en las capas del fondo del embalse donde sedimenta esta materia. Este agotamiento del oxígeno, facilitará posteriormente la liberación del fósforo que se encuentra adsorbido en el sedimento en formas solubles, generalmente como Fe(OOH)~P, CaCO₃~P o Al(OH)₃~P. No obstante, hay otros factores como el balance entre la sedimentación neta de materia orgánica, el P, Fe y otros procesos diagenéticos del sedimento con

producción de sulfuros, de los que también depende la tasa de liberación de fósforo en los embalses eutróficos (Gächter & Müller, 2003), y que no pueden ser abarcados en este estudio.

Cabe destacar, que las concentraciones de fósforo total que se han obtenido se corresponden, según la OCDE (1982), con un embalse eutrófico (0,035-0,1 mg/l): salvo en junio, en todas las campañas se alcanzan valores superiores a 0,035 mg/l en la zona fótica, además de en el fondo.

Desde un punto de vista estequiométrico, según Reynolds (1996), la producción primaria fitoplanctónica estaría garantizada con concentraciones de PRS (fósforo reactivo soluble) superiores a 3 μg P/I y de NID (nitrógeno inorgánico disuelto) superiores a 80 μg N/I. A lo largo del periodo estudiado en 2016, el P ha podido constituir un factor limitante para el desarrollo del fitoplancton en el embalse de Serones en la zona fótica durante las primeras 4 campañas, con valores de PRS inferiores a 3 μg P/I (Figura 15). El nitrógeno por su parte, parece actuar también como un factor casi limitante en la zona fótica en esas primeras 4 campañas, con valores de NID inferiores a 80 μg N/I en la 1ª, 2ª y 4ª campaña, y sensiblemente superior en la 3ª.

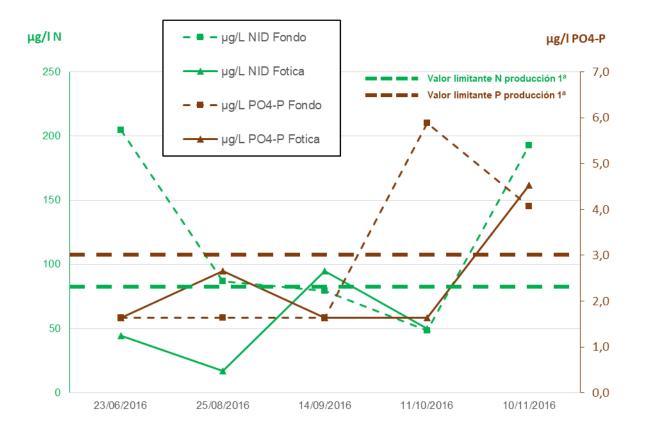


Figura 15. Evolución de la concentración en la columna de agua del embalse de Serones (zona fótica y fondo) del PRS (fósforo reactivo soluble) y del NID (nitrógeno inorgánico disuelto) en las campañas realizadas en 2016, respecto a los valores teóricos limitantes para la producción primaria.

DE FOMENTO

Finalmente, el papel que pueda desempeñar la comunidad ictiológica del embalse, especialmente las carpas, en el reciclado de fósforo a la masa de agua a través de sus excrementos, podría tener una cierta relevancia (Vanni, 2002). No obstante, estudios previos (Griffiths, 2006) indican que cuando la productividad del ecosistema aumenta, su importancia en el reciclado de nutrientes sería menor que la tasa de excreción producida por otras comunidades como el plancton, funcionando más en estos casos como almacén de nutrientes, debido principalmente a sus bajas tasas de renovación frente a las superiores mostradas por el plancton. Aunque sólo se dispone de datos de la comunidad ictiológica para el verano de 2010 (datos aportados por la CHD), es preciso mencionar el papel que pueden desempeñar los peces en el ciclo de los nutrientes del embalse, en el caso de que su biomasa fuese significativa o elevada.

5.1.3. Metales

En los análisis de los metales correspondientes a las muestras de agua obtenidas en las campañas de muestreo de 2016 se han obtenido resultados inferiores al límite de cuantificación para los elementos siguientes: As, Cd, Cr, Pb, Zn, Be, C, V y Ni (Anexo III). En el caso del Se, Cu y B, las concentraciones son muy inferiores a los niveles establecidos para aguas de consumo humano que vienen recogidos en el Real Decreto 140/2003 (Ministerio de la Presidencia, 2003). En la Figura 16 se muestran las concentraciones de Fe, Mn y Al que se han obtenido en las muestras de la zona fótica y en el fondo de la zona de presa del embalse, entre junio y noviembre de 2016.

Durante las campañas de verano, se ha observado una mayor concentración de Al, Mn y Fe, principalmente en el fondo del embalse. La estratificación estival de la columna de agua, que provoca la disminución de oxígeno disponible en las capas más profundas (incluso en algunos casos alcanzando condiciones anóxicas), facilita la liberación de dichos metales retenidos en el sedimento bajo condiciones reductoras.

Si se comparan los valores obtenidos con los niveles de calidad de agua de consumo humano recogidos en el Real Decreto 140/2003 (200 μ g/l, 50 μ g/l y 200 μ g/l para Fe, Mn y Al respectivamente; Ministerio de la Presidencia, 2003), durante el año 2016 se obtuvieron concentraciones inferiores a dichos niveles, exceptuando las muestras obtenidas en el fondo del embalse y en verano, con valores superiores a los niveles de calidad debido a los procesos de liberación de metales que se producen desde el sedimento.

MINISTERIO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS

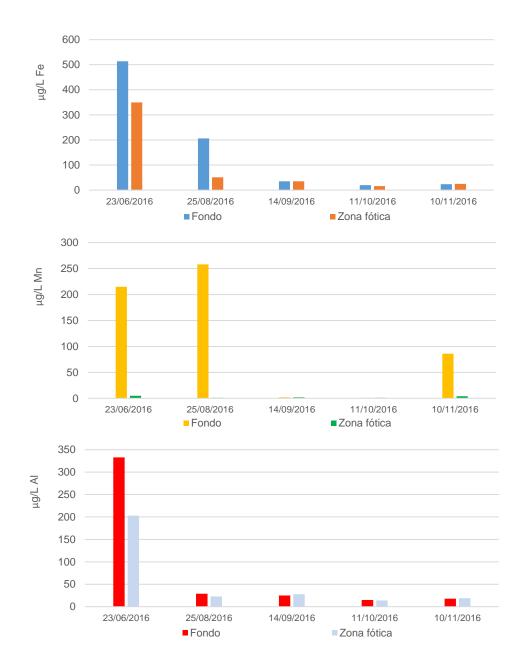


Figura 16. Concentraciones de Fe, Mn y Al en la zona de presa, en fondo y zona fótica, en el embalse de Serones durante las campañas del 2016.

5.2. Química del sedimento

Los resultados de los análisis realizados vienen recopilados en el Anexo IV.

5.2.1. Densidad y materia orgánica

En la Figura 17 se muestran los perfiles de la densidad y del contenido de materia orgánica obtenidos en las muestras del sedimento superficial del embalse de Serones.

MINISTERIO DE FOMENTO

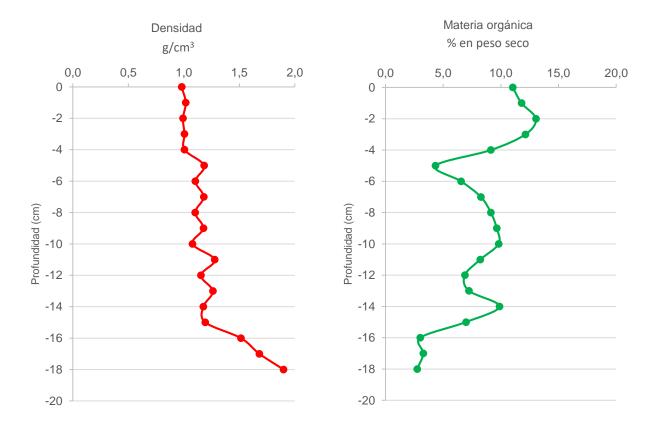


Figura 17. Perfiles de densidad (g/cm³) y materia orgánica (% peso seco) en el testigo de sedimento superficial tomado en la zona de presa del embalse de Serones.

El contenido de agua en el sedimento disminuye (y por tanto la densidad aumenta) con la profundidad del testigo debido a que la porosidad es menor y aumenta la compactación (Figura 17). Las partículas de gran tamaño sedimentan en las zonas someras mientras que las de pequeño tamaño lo hacen en las zonas profundas. Es por ello que en la zona de presa llegan partículas más finas como limos, arcillas o materia orgánica. Cuando se realiza un estudio limnológico en un embalse grande, normalmente se toman testigos en distintos puntos (colas, presa,...) para evaluar las diferencias de composición del sedimento. En el embalse de Serones, al ser de pequeño tamaño y relativamente somero (<10 m de profundidad), se ha considerado suficiente el tomar un único testigo en la zona de presa como representativo de la masa de agua para los objetivos de este estudio.

El análisis del contenido de materia orgánica en el sedimento aporta una información de interés sobre la evolución temporal de la producción primaria del embalse, además de las repercusiones que puede tener sobre la calidad del agua del mismo. Un elevado contenido de materia orgánica puede por ejemplo afectar en la inmovilización de metales pesados, puesto que ejerce de agente acomplejante formando complejos solubles o insolubles (Parra & Espinosa, 2008), además de determinar la demanda de oxígeno en la interfase agua-sedimento afectando a los procesos de liberación de fósforo, metales u otros componentes a la columna de agua.

En el embalse de Serones, el contenido de materia orgánica en el sedimento no es muy elevado (<15% peso seco), disminuyendo con la profundidad. A lo largo del testigo de sedimento, se observan periodos con un ligero aumento del porcentaje de materia orgánica, que podrían asociarse a periodos de mayor producción de biomasa en el embalse o a una mayor entrada externa de materia orgánica particulada proveniente de la cuenca. La datación con radioisótopos recientes (210 Pb, 137 Cs) de las muestras obtenidas permitiría asignar fechas concretas a esos periodos de mayor productividad, y relacionarlos con las variables ambientales y posibles presiones en la cuenca que podrían haber provocado esos cambios. Adicionalmente, un análisis isotópico del sedimento (δ^{13} C y δ^{15} N) aportaría una información relevante para discernir el origen de la materia orgánica.

5.2.2. Nutrientes

En la Figura 18 se muestra la concentración de nitrógeno total y fósforo total a lo largo del testigo de sedimento superficial obtenido en el embalse de Serones.

Algunos autores establecen que la concentración de nitrógeno en el sedimento en lagos suele estar entre 500 y 5000 mg/kg, estando los valores más altos relacionados con un mayor crecimiento del fitoplancton (Golterman, 2004). Sin embargo, en varios embalses estudiados en cuencas silíceas de la Península Ibérica (CEDEX, 2014, 2016a y 2016b) estos valores se situaron entre 6600 y 10700 mg/kg. En el embalse de Serones se han obtenido valores entre 1000 y 6000 mg/kg (peso seco), inferiores a los encontrados en esos estudios.

Las fuentes de nitrógeno y los procesos biogeoquímicos que pueden contribuir a la producción de materia orgánica en el sedimento son diversos. Las principales formas de nitrógeno que estarían disponibles para la producción primaria en el embalse son el NH₄⁺ y el NO₃⁻, además del nitrógeno atmosférico, que podría ser fijado por algunas cianobacterias. Adicionalmente, la entrada de nitrógeno externa puede estar originada en la vegetación y suelos de la cuenca, usos agrícolas y ganaderos, así como en forma de depósito atmosférico (húmedo o seco), que podría llegar a tener una cierta relevancia en un ecosistema acuático, pero su cuantificación excede los objetivos de este estudio.

El contenido de nitrógeno que se encuentra en el sedimento tiene su origen principalmente en la materia orgánica sedimentada, la cual, a su vez, está relacionada directamente con la producción primaria interna del sistema, y por tanto, con la concentración de carbono orgánico (Golterman, 2004). Es por ello que sus concentraciones en el sedimento siguen patrones similares (Figura 17 y Figura 18). En aquellas profundidades en donde se detecta un aumento de materia orgánica, muy probablemente es debido a una mayor producción primaria en ese periodo, produciéndose por tanto una mayor sedimentación de nitrógeno orgánico procedente de detritos algales.

La liberación de nitrógeno al agua es principalmente en forma de amonio, por descomposición de la materia orgánica bajo condiciones anóxicas mediante el proceso de amonificación, además de liberar N₂ gaseoso a la atmósfera por desnitrificación bacteriana. El desarrollo de un hipolimnion anóxico o la entrada de amonio procedente de la cuenca (cuya fuente más probable en este caso es el ganado), podrían ser las principales causas de un aumento de la producción primaria en determinadas épocas o años de la historia del embalse. Partiendo de la hipótesis de la existencia

MINISTERIO

de una fuente relevante de formas asimilables de nitrógeno (NH₄ $^+$ y NO₃) en el caso del embalse de Serones, en el que grupos algales como las diatomeas o algas verdes tienen un notable crecimiento en el periodo estival, la relevancia de la fijación de N atmosférico por cianobacterias cabría esperar que fuese menos significativa, salvo en aquellos años en los que se produzcan *blooms* de este grupo, y dependiendo de la especie o especies que los formasen. Un estudio isotópico (análisis de δ^{13} C y δ^{15} N) de la materia orgánica en el sedimento permitiría dilucidar con mayor confianza el porcentaje de origen interno o externo de las fuentes de materia orgánica y nutrientes presentes en el mismo.

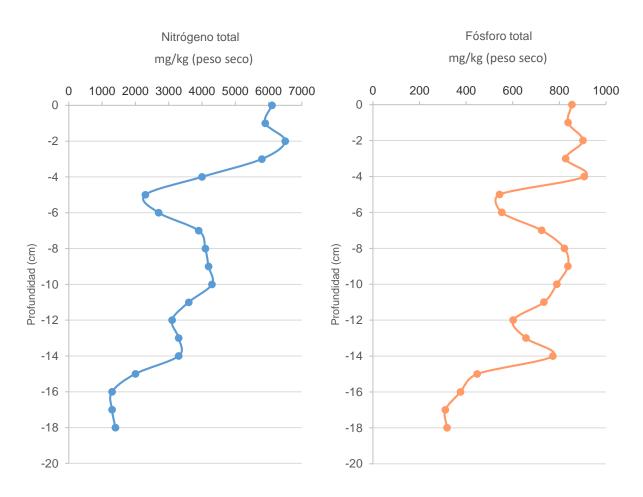


Figura 18. Perfiles de nitrógeno total y fósforo total (mg/kg, peso seco) en el testigo de sedimento tomado en la zona de presa del embalse de Serones.

A diferencia del nitrógeno, la concentración de fósforo en el sedimento puede no depender tan directamente de la producción primaria, estando implicado en ocasiones en procesos tanto biológicos como químicos de oxidación-reducción que determinan su precipitación o inmovilización, así como su liberación a la columna de agua. Es relevante la cantidad de fósforo que se encuentre en los 10 cm superiores del sedimento, ya que es allí donde puede movilizarse por los citados procesos. El contenido de fósforo en sedimento puede ser de origen orgánico (por descomposición de producción primaria) o de origen inorgánico. Parte de este último puede ser adsorbido en el sedimento por hidróxidos de hierro y de aluminio, o bien precipitar con carbonato de calcio en

cuencas de naturaleza calcárea, aunque este no sería el caso de Serones por ser su cuenca de naturaleza silícea. Sin embargo, su perfil en el testigo de sedimento de Serones muestra el mismo patrón que los de materia orgánica y nitrógeno (Figura 17 y Figura 18), lo que indica que la principal fuente de fósforo en el sedimento del embalse sería la materia orgánica sedimentada, *a priori* muy relacionada con la producción primaria en el mismo, pero también en una proporción no estimada con otras fuentes de materia orgánica externas en la cuenca.

La proliferación de las comunidades fitoplanctónicas o la formación episódica de *blooms* de cianobacterias bajo determinadas condiciones ambientales y de la columna de agua, depende no solamente del aporte externo del fósforo sino también del interno. Nürnberg (1988) estimó una tasa media de liberación del fósforo del sedimento al agua en varios lagos que presentaban condiciones anóxicas en el sedimento en función de su grado trófico (Figura 19).

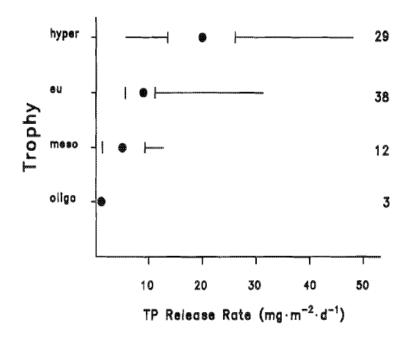


Figura 19. Relación de la tasa de liberación de fósforo con el estado trófico de varios lagos seleccionados a nivel mundial (•: media; | : intervalo de confianza del 95%;—| : Rango). A la derecha del gráfico se indican el número de lagos considerados para cada estado trófico (Nürnberg, 1988).

Esta tasa de liberación varía en función de la cantidad de fósforo que se encuentra en los 5 primeros centímetros de espesor de sedimento según la siguiente ecuación propuesta por Nürnberg (1988):

Log (Tasa liberación PT (
$$mg/m^2$$
. d ía)) = 3,77* P_T ($mg/g_{sedimento\ peso\ seco}$) – 4,18 (t^2 = 0,67).

Considerando el promedio de la cantidad de fósforo presente en los 5 cm superficiales del sedimento del embalse de Serones, se obtiene una tasa media de liberación de 12,13 mg/m²·dia, valor que se correspondería con un embalse eutrófico según la tasa propuesta por Nürnberg (1988) (Figura 19). No obstante, para obtener una estima de la carga total anual de fósforo que aportaría teóricamente el sedimento a la masa de agua del embalse y su relevancia o porcentaje frente a las cargas externas (tributarios y fuentes difusas), esta tasa debe ponderarse por el número de días en

DE FOMENTO

los que la superficie del sedimento se halla bajo condiciones cercanas a la anoxia, así como por el área del mismo sometida a esa situación (dependiente de la batimetría).

En general, la estimación de la carga de fósforo liberado desde el sedimento es compleja, ya que no solamente depende de que existan condiciones anóxicas sino también de aspectos hidrológicos y/o morfológicos (Nürnberg, 2009). El tamaño y la forma de la cubeta del embalse determinan los procesos de sedimentación, resuspension, difusión y mezcla del sedimento, regulando otras variables como la concentración de fósforo, materia orgánica en suspensión, turbidez, y por tanto, la producción primaria y secundaria de la masa de agua. En el embalse de Serones se han observado valores muy elevados de turbidez en toda la columna de agua durante las campañas realizadas (valores del Disco de Secchi entre 0,6 y 1,3 m). El disponer de una batimetría precisa de la cubeta del embalse, así como de un registro continuo del caudal del principal tributario del embalse (río Voltoya), permitiría una mejor estima de estos procesos.

En general, el efecto de la liberación de P del sedimento puede ser muy relevante en masas de agua poco profundas como es el caso del embalse de Serones, ya que la zona fótica alcanza o está muy cerca del fondo durante gran parte del año. Además, al recibir una mayor radiación por la poca profundidad de la columna de agua, los sedimentos alcanzan una mayor temperatura que en los embalses profundos, lo que favorece la actividad microbiana, favoreciendo la anoxia, la reducción del Fe y la liberación del P. La ocurrencia de periodos de anoxia en el fondo, sucedidos de mezclas rápidas por efecto del viento, puede generar pulsos internos de liberación y disponibilidad del P en toda la masa de agua durante el periodo estival, además de movilizar y resuspender material sedimentado que puede contener formas de resistencia y colonias de cianobacterias, generando situaciones muy propicias para la formación de *blooms*, como ya han puesto de manifiesto otros autores (Cooke *et al.*, 1993).

Otro proceso adicional que puede favorecer el aporte de nutrientes del sedimento a la masa de agua es la bioturbación producida por los peces. Según los datos de la CHD para 2010, la especie dominante en el embalse fue la carpa (Cyprinus carpio) (con un equivalente de 1066 kg/ha de carpas), especie de hábitos bentívoros, que cuando su número es elevado provoca una notable resuspensión del sedimento, aumentando la turbidez y la liberación y reciclado de la carga interna de nutrientes a la columna de agua (Breukelaar *et al.*, 1994), lo que podría ser especialmente relevante en el caso del fósforo, elemento limitante en una cuenca desprovista de posibles fuentes o vertidos significativos. Huser et al. (2016) demostraron que el efecto removedor del sedimento de las carpas en un lago somero producía un incremento en la cantidad de fósforo potencialmente liberable del 55-92 % (según la localización espacial), lo que significaba un impedimento notable en la eficacia de las medidas adoptadas para reducir la disponibilidad del P de la capa activa del sedimento.

5.2.3. Metales

La normativa vigente en España (R.D. 60/2011) (MARM, 2011b) no proporciona todavía valores o rangos concretos exigidos para la concentración de la mayoría de los metales en sedimento de masas de agua, por lo que se ha optado, a título orientativo, por comparar los resultados de la concentración de As, Cd, Cr, Cu, Fe, Mn, Pb, Ni y Zn obtenidos en el testigo de sedimento superficial

DE FOMENTO PARA LA

PARA LA TRANSICIÓN ECOLÓGICA

CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS

del embalse de Serones (Anexo IV) con la normativa canadiense (Canadian Ministry of Environment, 2017) (Tabla 10). Según esta normativa, la mayoría de los metales se encuentran por debajo de los niveles bajos de calidad (As y Cd se encuentran por debajo del límite de cuantificación, 5 µg/l y 1 µg/l, respectivamente).

Tabla 10. Niveles guía de metales en sedimento. Normativa canadiense (2015) (http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/bc_env_working_water_quality_guidelines.pdf)

Niveles guía de calidad en sedimento							
Sustancia	Nivel bajo (μg/g peso) seco)	Nivel alto (μg/g peso) seco)	Reference				
Arsénico	5,9	17	CCME (1998)				
Cadmio	0,6	3,5	CCME (1997)				
Cobre total	35,7	197	CCME (1998)				
Cromo total	37,3	90	CCME (1998)				
Hierro	21200 (~2%)	43766 (~4%)	Jaagumagi (1993)				
Manganeso	460	1100	Jaagumagi (1993)				
Níquel	16	75	Jaagumagi (1993)				
Plomo total	35	91,3	CCME (1998)				
Zinc	123	315	CCME (1998)				

CCME: Canadian Council of Ministers of the Environment.

Jaagumagi, R., 1993. Development of the Ontario Provincial Sediment Quality Guidelines for Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel and Zinc. Water Resources Branch, Ontario Ministry of Environment.

En la Figura 20 se muestra el perfil del contenido de Fe, Al y Mn en el sedimento superficial del embalse de Serones, en la zona de presa.

Únicamente, en el caso del hierro se observa una concentración a lo largo del testigo de sedimento que supera en ocasiones al nivel alto establecido en la norma canadiense (Tabla 10). El perfil del aluminio presenta un patrón muy similar al del hierro a lo largo del testigo, probablemente debido a dos motivos: uno, la entrada de elementos terrígenos aportados por las cuencas silíceas, en los que el hierro se encuentra muy significativamente asociado al aluminio como óxidos metálicos (López, 2009), y otro, el comportamiento de ambos elementos en los mecanismos de precipitación y solubilización asociados a la dinámica del fósforo. La concentración de aluminio relativamente elevada tiene posiblemente un origen natural, ya que la cuenca del embalse está constituida de material arcósico (compuesto fundamentalmente de cuarzo con tectosilicatos y aluminosilicatos). Con respecto al manganeso, el perfil también sigue un patrón similar, y su contenido se encuentra entre los dos niveles guía establecidos por la norma canadiense.

MINISTERIO DE FOMENTO

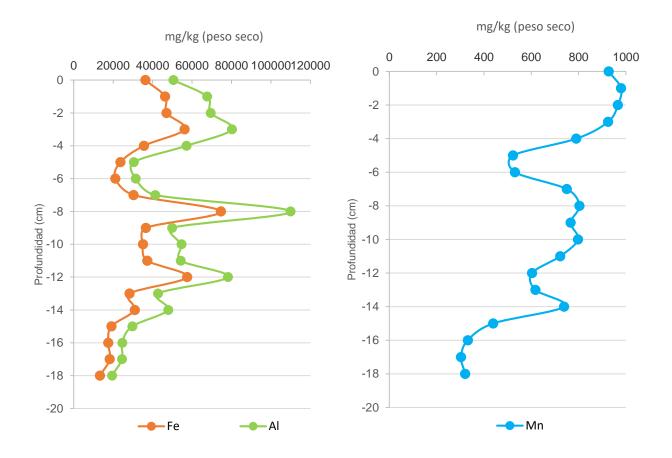


Figura 20. Contenido de Fe, Al y Mn en el sedimento de la zona de presa del embalse de Serones.

Generalmente, la retención de los metales en el sedimento está muy relacionada con el tamaño de partículas y la cantidad de materia orgánica sedimentada. Un menor tamaño de partículas (limo, arcilla, arena) y un mayor contenido de materia orgánica favorecen la retención y adsorción de los metales.

Los aumentos significativos en la concentración de Al y Fe que se observan en la Figura 20 en determinadas profundidades del sedimento (ej. 8 y 12 cm), podrían deberse no sólo a una mayor sedimentación de materia orgánica y/o partículas finas, sino a unas condiciones de la columna de agua en las que el agotamiento de oxígeno en las capas cercanas al sedimento fue escaso o ausente. Esta situación podría generarse con una entrada mayor de caudales al embalse en una época de mayores precipitaciones, incrementándose la tasa de renovación, y por tanto, disminuyendo la estabilidad de la columna de agua, lo que favorecería una mayor retención de estos metales en el sedimento. Una hipótesis para explicar las diferencias encontradas entre el Fe y el Mn en esos periodos, en los que los máximos valores de este último elemento son menos significativos, podría ser el hecho de que el Fe precipita antes que el Mn (Engstrom y Wright, 1984), y en periodos en los que la tasa de renovación de las aguas fuese mayor y hubiese una concentración mayor de partículas finas arrastradas de la cuenca, la cantidad de Fe sedimentado sería superior al Mn.

5.3. Fitoplancton

5.3.1. Evolución del fitoplancton en 2016

Los resultados de los análisis de las muestras de fitoplancton están recogidos en el Anexo V.

El estudio de la dinámica del fitoplancton en una masa de agua como el embalse de Serones presenta algunos inconvenientes o dificultades, a diferencia de otros embalses, debido a su carácter somero. A priori, cabría esperar una sucesión estacional en la composición de las especies como respuesta a una secuencia o conjunto de factores ambientales previos, la cual podría ser predecible si se dispone de la información adecuada. Sin embargo, esta tarea no es fácil para el embalse de Serones, ya que, aunque se dispone de información de la composición fitoplanctónica para un periodo de 10 años (2006-2016), únicamente hay datos de dos muestreos en cada año (entre primavera y verano). Además, el estudio de la dinámica del fitoplancton en embalses someros como el embalse de Serones presenta mayor complejidad que en otros embalses más profundos. Así como en embalses o lagos profundos se han descrito patrones claros de sucesión en el fitoplancton (Becker et al., 2010; Sommer et al., 1986), en lagos o embalses someros existe una alta imprevisibilidad, especialmente cuando se hallan sometidos a frecuentes vientos fuertes, con estratificaciones débiles, en los que la resuspensión del sedimento reduce la transparencia del agua, y por tanto, el espesor de la zona fótica (Sommer et al., 1986). Estos condicionantes son los que se producen habitualmente en el embalse de Serones, en el que la sucesión de las especies puede alcanzar un grado de dependencia muy elevado de las diferentes condiciones meteorológicas en cada año hidrológico.

En la Figura 21 se muestra la relación entre los resultados de clorofila *a*, la transparencia medida con el disco de Secchi y el biovolumen, a lo largo de las campañas realizadas en 2016 en la zona de presa.

Entre junio y noviembre de 2016 se han obtenido valores altos de clorofila a, con una media de aproximadamente 19 μg/l, que se corresponde con un embalse eutrófico según la clasificación de la OCDE (8-25 μg/l) (OCDE, 1982), observándose una correlación significativa entre la concentración de clorofila a y el biovolumen ($R^2 = 0.8655$). Sin embargo, como se observa en la Figura 21, no hay una relación evidente entre la visibilidad del disco de Secchi, muy baja durante todo el periodo de estudio y determinante del bajo espesor de la zona fótica, con la evolución de la concentración de clorofila a en dicha zona, si bien su concentración es sensiblemente mayor para valores superiores de transparencia, a comienzos y finales del periodo estudiado. Muy probablemente, la resuspensión de material provocado por los frecuentes vientos que hay en el embalse, con una profundidad media muy baja, los aportes puntuales de sólidos en suspensión por los tributarios y la escorrentía directa, y el posible efecto de la bioturbación producida por los peces bentívoros (ej. carpas), contribuyen en diferente medida a esa baja transparencia de las aguas, mostrando un color marronáceo, y distorsionando la esperada relación entre la concentración de clorofila y la transparencia. Además, la estima de la zona fótica basada en mediciones de la transparencia con el disco de Secchi puede infravalorar hasta un 30 % la profundidad de penetración de la luz (Lee & Rast, 1997).

> MINISTERIO DE FOMENTO

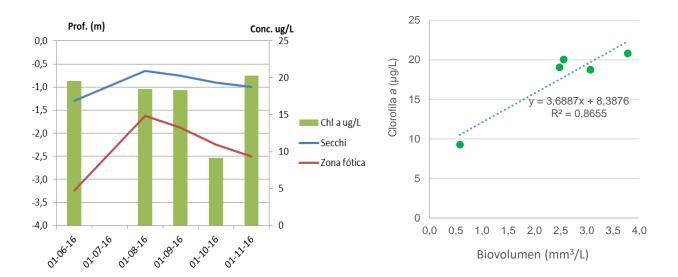


Figura 21. Concentración de clorofila *a* (μg/l), transparencia con Disco de Secchi y biovolumen (mm³/l) en la zona fótica de la zona de presa del embalse de Serones en el periodo de estudio.

La evolución de la composición del fitoplancton entre junio y noviembre de 2016 en el embalse de Serones es muy similar en la zona fótica y el fondo (Figura 22), siguiendo el mismo patrón de cambio a lo largo del periodo de estudio con ligeras diferencias, como consecuencia de la escasa profundidad de la columna de agua (6-8 m).

En la zona fótica, en junio y noviembre, el grupo predominante han sido las criptofitas, con más del 78 y 57 % del biovolumen total respectivamente (Figura 22). Dentro de las criptofitas, la especie predominante ha sido *Cryptomona erosa* (Anexo V), cuya concentración disminuye en los meses de agosto y octubre en favor de otros grupos como las cianofíceas o diatomeas. Las criptofitas son algas que viven en una amplia variedad de hábitats leníticos, y muy adaptadas, junto con las diatomeas, a bajas intensidades de luz (valores bajos de Disco de Secchi) (Klaveness, 1988), a diferencia de las clorofíceas, que tienen requerimientos de luz mayores (Padisák *et al.*, 2009), y que apenas han desarrollado una población significativa a lo largo del verano estudiado.

Dentro del grupo de las diatomeas, la especie mayoritaria en todas las campañas fue *Aulacoseira ambigua*. Esta suele encontrarse en lagos de pequeño y mediano tamaño, y es sensible a la estratificación y a niveles bajos de sílice en el agua (Reynolds *et al.*, 2002; Padisák *et al.*, 2009). Además, su desarrollo se ve perjudicado por la presencia de cianobacterias. En junio, con el embalse débilmente estratificado, mostraba un biovolumen bajo (Figura 9 y Figura 22), aumentando su concentración al producirse la mezcla de la columna de agua en agosto y septiembre, volviendo a disminuir en octubre y noviembre, tal vez debido en parte a una disminución notable en la temperatura de la columna de agua (Figura 9). Temperaturas inferiores a 15 °C parecen dificultar el desarrollo de esta especie según Shear *et al.* (1976).

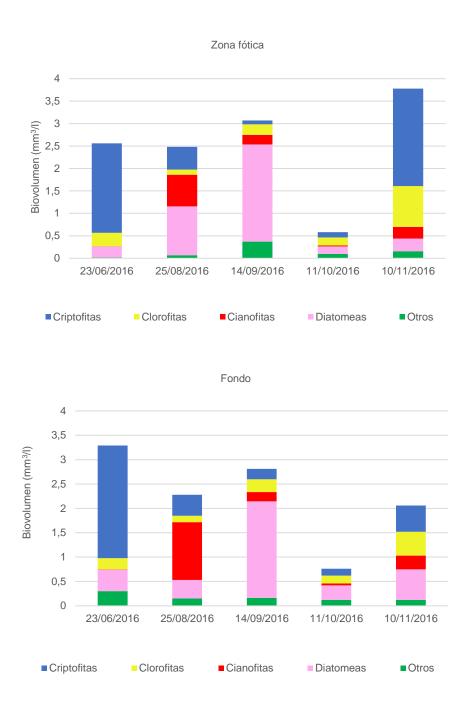


Figura 22. Composición del fitoplancton entre junio y noviembre de 2016, en la zona de presa (zona fótica y fondo) del embalse de Serones.

Las cianobacterias se desarrollaron principalmente en verano (Figura 22), en el periodo de menor penetración de la luz, y mayor temperatura del agua. Al poseer otros pigmentos además de la clorofila *a*, este grupo del fitoplancton puede absorber luz en distintas condiciones, y su desarrollo puede verse favorecido cuando la temperatura de la columna de agua es superior a 20 °C (Jacoby *et al.*, 2000), situación que se produjo en el mes de agosto (Figura 9).

MINISTERIO DE FOMENTO

En la Figura 23 se muestra la composición de las cianobacterias, tanto en número de células como en porcentaje de biovolumen, en la zona fótica en el área de la presa del embalse de Serones, entre junio y noviembre de 2016. En agosto y septiembre, el número de células de *Cyanodictyon imperfectum* superó el nivel de alerta II para aguas de consumo humano y el nivel guía II para aguas de baño, 100 000 células/ml, estabecidos por la OMS (Tabla 8). Se trata de una especie que se encuentra en aguas mesotróficas y eutróficas, pero no se considera potencialmente tóxica en las aguas continentales españolas por su improbable toxicidad (MARM, 2011a).

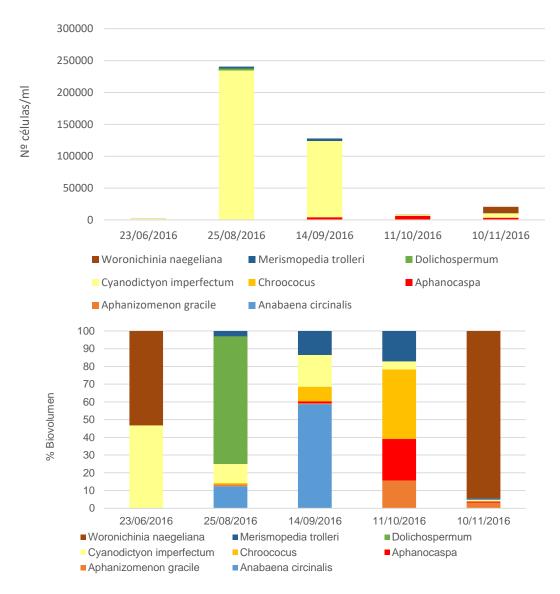


Figura 23. Composición de las cianobacterias (Nº células/ml y % biovolumen) en la zona fótica de la zona de presa del embalse de Serones, entre junio y noviembre de 2016.

Si bien el mayor número de células corresponde a la especie *Cyanodictyon imperfectum*, al considerar el biovolumen, son *Dolichospermum* sp. y *Anabaena circinalis* las más abundantes en agosto y septiembre respectivamente, ya que el volumen celular de *Cyanodictyon* es muy pequeño, y por tanto, su relevancia desde el punto de vista de la producción primaria es menor.

Tabla 11. Biovolumen de cianobacterias (mm³/l) en la zona fótica de la presa del embalse de Serones, entre junio y noviembre de 2016.

FECHA DE MUESTREO	BIOVOLUMEN TOTAL CIANOBACTERIAS (mm³/l)
23/06/2016	0,001
25/08/2016	0,704
14/09/2016	0,214
11/10/2016	0,020
10/11/2016	0,260

Durante todo el periodo, salvo en el mes de junio, el biovolumen de cianobacterias es superior a 0,02 mm³/l. En agosto, septiembre y noviembre se supera el nivel de alerta I establecido por la OMS para aguas destinadas a la producción de agua potable, 0,2 mm³/l (Tabla 8). La composición de las cianobacterias, en términos de biovolumen, varió notablemente a lo largo del periodo estudiado (Figura 23). En junio dominaban *Cyanodictyon imperfectum y Woronichinia naegeliana*. En agosto y septiembre, se desarrollaron fundamentalmente *Dolichospermum* sp. y *Anabaena circinalis*, respectivamente. Wacklin *et al.* (2009) propusieron el género *Dolichospermum* para representar la mayoría de las especies planctónicas de *Anabaena*, de manera que más de 50 especies pasaban a formar parte del género *Dolichospermum* (Li *et al.*, 2016). Sin embargo, esta nueva taxonomía no ha sido aceptada por todos los científicos. En el caso del embalse de Serones, los expertos que han analizado las muestras han considerado las especies por separado. En octubre, *Chroococus* sp. fue dominante, mientras que en noviembre volvió a predominar *Woronichinia naegeliana* (Figura 23).

Con respecto a la toxicidad de las cianobacterias, *Anabaena, Dolichospermum* y *Aphanizomenon* son potencialmente las más tóxicas ya que pueden producir anatoxinas, cilindrospermopsina, saxitoxinas y microcistinas (MARM, 2011a; Li *et al.*, 2016). A estas hay que sumar *Woronichinia naegeliana*, que puede producir microcistinas. El resto de las especies identificadas en el embalse de Serones no están incluidas dentro del catálogo de especies potencialmente tóxicas de las aguas continentales españolas (MARM, 2011a).

5.3.2. Evolución histórica del fitoplancton

Con el fin de estudiar posibles patrones en la composición del fitoplancton a lo largo del tiempo, se han comparado los resultados obtenidos en las campañas realizadas en 2016 con datos aportados por la CHD durante el periodo 2006-2016 (Figura 24).

MINISTERIO DE FOMENTO

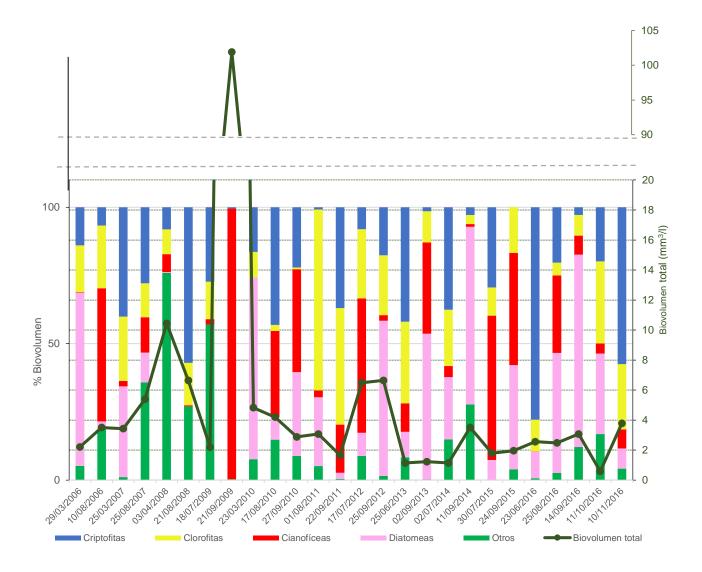


Figura 24. Composición del fitoplancton en el embalse de Serones, en presa (en la zona fótica), entre marzo de 2006 y noviembre de 2016 (Datos CHD).

Durante el periodo 2006-2016, en la mayoría de los muestreos se ha obtenido un biovolumen de fitoplancton superior a 2 mm³/l, salvo en algunos de 2011, 2013, 2014 y 2016 (Figura 24). En septiembre de 2009 se obtuvo un biovolumen excepcionalmente alto (102 mm³/l), debido a la ocurrencia de un *bloom* de cianobacterias. Para que un embalse como Serones, perteneciente a la tipología ecológica E-T01 (MAGRAMA, 2015), alcance un potencial ecológico bueno o superior, el biovolumen tiene que ser inferior a 1,9 mm³/l, lo cual ocurrió sólo en los años mencionados anteriormente.

Durante 2016 el comportamiento de la comunidad de diatomeas es similar al de los años anteriores, disminuyendo su abundancia cuando el embalse está estratificado. Al producirse la mezcla de la columna de agua a finales de verano o en otoño, la comunidad vuelve a desarrollarse. Las especies de diatomeas predominantes en el embalse de Serones entre 2006 y 2016 han sido del género *Aulacoseira*.

Con respecto a las criptofitas, durante el periodo 2006-2015, al igual que se ha observado para el año 2016, la especie predominante ha sido *Cryptomonas erosa*. Su evolución anual es similar durante todo este periodo, observándose un mayor desarrollo a comienzos del verano.

Las clorofíceas es un grupo que no presenta una importancia muy significativa en términos de biovolumen en el embalse de Serones salvo en algún año, como es el caso de 2011, en el que la estabilidad de la columna de agua y la estratificación estival fue mayor de lo habitual y con una mayor duración, lo que favoreció probablemente el desarrollo de este grupo, en detrimento de otros grupos (ej. diatomeas) que requieren condiciones de mezcla para desarrollarse mejor.

Las cianobacterias presentan un desarrollo muy variable a lo largo del periodo de estudio, como se describe en el próximo apartado, con años en los que se desarrollan de forma excepcional (ej. 2011, 2015) y otros en los que su relevancia es mínima (ej. 2008, 2014) (Figura 24). Variables como la estabilidad de la estratificación y la hidrología del embalse, la disponibilidad de los nutrientes en la columna de agua, tanto de origen externo como interno (sedimento), o la radiación y la temperatura de la columna de agua, son probablemente las responsables de este desarrollo variable observado a lo largo del tiempo (Hudnell, 2008).

En líneas generales, hay una sucesión a corto plazo en la dominancia de los grupos o especies de algas en el embalse dependiente de las variables climatológicas e hidrológicas. Esta sucesión es frecuentemente diferente de la respuesta esperable en función de la disponibilidad de nutrientes en la columna de agua, debido al efecto negativo o regulador sobre la fotosíntesis y la estabilidad de la columna de agua de situaciones con elevada turbidez (zona fótica pequeña) o rupturas frecuentes de la estratificación.

5.3.3. Evolución histórica de las cianobacterias

Se han comparado los resultados de las cianobacterias obtenidas en 2016 con los datos de años anteriores (2006-2015) aportados por la CHD. En la Figura 25 se muestra el número de células/ml y el biovolumen registrados en campañas realizadas entre 2006 y 2016.

Se observa que el biovolumen no está siempre relacionado directamente con el número de células (Figura 25) ya que el volumen celular es diferente para cada especie. En agosto de 2006, por ejemplo, el número de células fue superior a 230000 cel/ml y sin embargo no se vio reflejado en el biovolumen. Aunque algunos autores definen la formación de un *bloom* cuando la concentración de cianobacterias es superior a 20000 cel/ml (Whitton & Potts, 2000), realmente ese umbral puede no tener una relevancia en términos de biomasa cuando se trata de especies con un pequeño volumen celular. En el embalse de Serones, podría hablarse de la formación de *blooms* de cianobacterias debido a su porcentaje en términos de biomasa fitoplanctónica respecto a los otros grupos algales en los años 2009, 2012 y 2015 (Figura 24 y Figura 25).

En general, durante todo el periodo se supera el nivel de alerta I establecido por la OMS para aguas destinadas a la producción de agua para consumo humano (Tabla 8), tanto en número de células como en biovolumen (2000 cel/ml y 0,2 mm³/l). El nivel de alerta II se ha superado, a nivel de biovolumen (10 mm³/l), en septiembre de 2009 y a nivel de número de células (100 000 cel/ml) en julio de 2012, junio de 2013 y agosto y septiembre de 2016 (Figura 25).

MINISTERIO DE FOMENTO

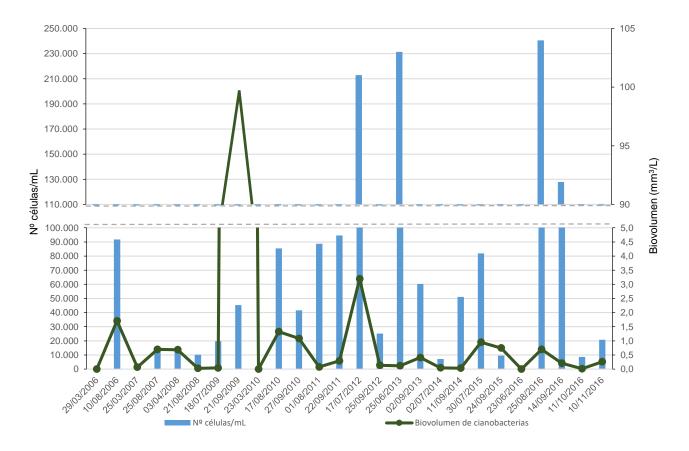


Figura 25. Nº células/mL y biovolumen (mm3/L) de cianobacterias, en la presa (zona fótica) del embalse de Serones, entre 2006 y 2016 (Datos CHD).

Debido a la complejidad de las interacciones entre procesos físicos y ecológicos, de los cuales no se suele disponer de información suficiente a escala temporal y espacial registrada en el campo, es difícil de determinar las circunstancias que ocasionan la formación de *blooms* de cianobacterias. Su desarrollo depende de la combinación de varios factores como la hidrología, la disponibilidad de nutrientes, la radiación solar o la temperatura (Hudnell, 2008). Algunos autores han observado tanto en campo como en laboratorio una buena relación entre la temperatura y la dominancia de las cianobacterias en lagos someros de climas templados y a escala regional, especialmente para aquellas especies con capacidad de flotación (Kosten *et al.*, 2012).

A escala local para el caso del embalse de Serones, se observa como los mayores valores registrados tanto en el número de células como de biovolumen de cianobacterias, se producen en condiciones en las que la temperatura media de la columna de agua se encontraba en torno a los 20°C o superior (Figura 26). En función de las condiciones fisicoquímicas, biológicas y/o hidrológicas, pueden desarrollarse unas especies u otras: una carga excesiva de fósforo en forma de ortofosfatos puede favorecer el crecimiento de cianobacterias fijadoras de N₂ (*Anabaena* sp., *Aphanizomenon* sp.), mientras que cargas excesivas de fósforo y nitrógeno (en forma de nitratos y/o amonio) puede ayudar al desarrollo de especies no fijadoras de N₂, como son *Microcystis* sp. o *Planktothrix* sp. (Hudnell, 2008). Además, las características morfológicas, fisiológicas y ecológicas

de cada una de las especies pueden favorecer su crecimiento. Por ejemplo, *Microcystis aeruginosa* puede coexistir con *Anabaena flos-aquae* pero sin embargo no cohabitar con *Planktothrix rubescens* (Whitton & Potts, 2000).

Figura 26. Relación entre el nº de células (izda.) y biovolumen (dcha.) de cianobacterias con la temperatura media de la columna de agua en el embalse de Serones durante el periodo 2006-2016.

En la Figura 27 se muestra la composición y dominancia marcadamente variable de las diferentes especies de cianobacterias a lo largo del periodo 2006-2016 en el embalse de Serones. En 2007 y 2008 se desarrolló principalmente *Microcystis aeruginosa*, mientras que en 2009 y 2010 fue *Aphanizomenon* sp la cianobacteria dominante. El género *Anabaena* dominó en 2006, 2007 y en algunos meses de los últimos 3 años del periodo de estudio, y *Dolichospermum* sp. lo hizo en 2011, 2012 y también en 2016. Finalmente, *Woronichinia naegeliana* fue la especie dominante en marzo 2006 (con un biovolumen bajo, 0,0043 mm³/L) y noviembre 2016.

El estudio de la relación entre las condiciones específicas que se han sucedido cada año y sus estaciones para el conjunto de variables ambientales, y el desarrollo de cada una de las especies de cianobacterias, requeriría una recopilación más amplia de algunos datos ambientales (hidrológicos, meteorológicos, etc...) y ecológicos (relacionados con la biología de cada especie), no contemplados en este trabajo. Ello permitiría interpretar mejor el patrón y la sucesión interanual de cada una de las especies. Además, las interacciones a corto plazo pueden ser muy relevantes para el desarrollo de este grupo, y la disponibilidad de datos con alta resolución temporal, en un medio muy cambiante por su escaso tamaño y profundidad, probablemente ofrecería una información de gran relevancia para la adopción de medidas en la gestión del embalse (Moreno-Ostos et al., 2009).

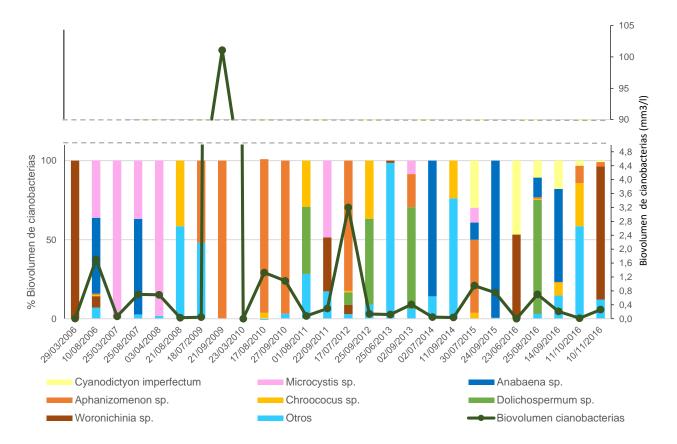


Figura 27. Composición de las cianobacterias, en la presa (zona fótica) del embalse de Serones, entre 2006-2016 (Datos CHD).

5.3.4. Potencial ecológico y estado trófico

En la Tabla 12 se indican los resultados obtenidos entre junio y septiembre de 2016 para los indicadores de calidad biológicos y el potencial ecológico calculado para el embalse de Serones.

Tabla 12. Indicadores de calidad biológicos y potencial ecológico del embalse de Serones durante el año 2016.

Indicador	23/06/2016	25/08/2016	14/09/2016	Media	RCE media	Potencial ecológico
IGA	13,36	46,90	4,79	21,68	0,946	Moderado
% cianobacterias	37,35	98,20	95,80	77,12	0,229	Malo
Clorofila a (mg/m³)	20,04	19,04	18,75	18,79	0,104	Deficiente
Biovolumen (mm ³ /l)	2,56	2,48	3,07	2,70	0,133	Moderado

Los datos del IGA (Índice de Grupos Algales), porcentaje de cianobacterias, clorofila *a* y biovolumen en el periodo entre 2006 y 2015 han sido suministrados por la CHD. Se ha calculado el Ratio de Calidad Ecológica (RCE) para cada uno de los indicadores (Tabla 13).

Tabla 13. Potencial ecológico del embalse de Serones durante el periodo 2006-2015, considerando los Ratios de Calidad Ecológica (RCE) de cada indicador.

RCE

AÑO	IGA	% cianobacterias	Clorofila a (mg/m³)	Biovolumen (mm³/l)
2006	NA	0,512	0,099	0,103
2007	NA	0,870	0,108	0,067
2008	0,983	1,000	0,109	0,054
2009	0,500	0,499	0,036	0,007
2010	0,634	0,664	0,091	0,102
2011	0,988	0,952	0,167	0,152
2012	0,820	0,758	0,080	0,055
2013	0,958	0,843	0,308	0,304
2014	0,960	0,983	0,106	0,155
2015	0,957	0,634	0,090	0,192

Durante el periodo 2006-2016 no se ha alcanzado un potencial ecológico bueno o muy bueno. Se ha obtenido un potencial ecológico moderado en 2011 y 2013, siendo deficiente en 2006, 2007, 2014 y 2015. Durante los años 2008, 2009, 2012 y 2016 el potencial ecológico ha sido malo. No se ha logrado conseguir por tanto el objetivo establecido para el embalse de alcanzar un potencial ecológico bueno a partir del 2015.

5.3.5. Estado trófico

En la Tabla 14 se recogen los valores de los indicadores utilizados para el cálculo del estado trófico del embalse de Serones durante el año 2016, cuyos resultados reflejan un estado moderadamente eutrófico.

MINISTERIO DE FOMENTO

Tabla 14. Estado trófico del embalse de Serones durante el año 2016.

Indicador	23/06/2016	25/08/2016	14/09/2016	Media	TSI
Disco de Secchi (m)	1,30	0,65	0,75	0,90	61,52
Clorofila a (μg/l)	20,04	19,04	18,75	19,28	59,63
Fósforo total (μg/l)	28,71	53,81	45,21	42,58	58,25
TSI media			59,80		

La siguiente figura muestra la evolución del estado trófico del embalse de Serones durante el periodo 2010-2016 (salvo para el año 2016, los valores del TSI han sido suministrados por la CHD), observándose una permanencia en un nivel moderadamente eutrófico o eutrófico.

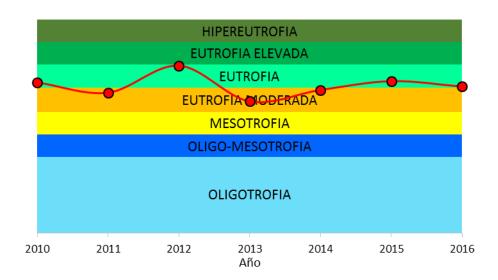


Figura 28. Evolución del estado trófico del embalse de Serones durante el periodo 2010-2016.

6. CONCLUSIONES

El embalse de Serones se localiza en la cabecera del río Voltoya, principal tributario de la masa de agua, aunque también recibe aportaciones del río Tuerto y de otros pequeños arroyos. En la cuenca del embalse no existen poblaciones ni fuentes puntuales de vertidos a la red hidrográfica. No obstante, se localizan 10 caseríos con un uso principalmente ganadero, lo que presumiblemente supone una afectación significativa por aporte difuso de nutrientes a las aguas del embalse, ya que la mayoría de ellos se localizan en el entorno u orillas de cursos de agua que drenan la cuenca del embalse. Durante gran parte del año la presencia del ganado se localiza en las amplias zonas de pastos de la cuenca, en las que los aportes de nutrientes por excrementos pueden ser retenidos mayoritariamente por el suelo y la vegetación herbácea. Sin embargo, en los meses estivales, cuando el pasto se seca y escasea el agua, el ganado se concentra en los cursos de agua o zonas

húmedas para abrevar o alimentarse con pastos más frescos, proporcionando un aporte de nutrientes de forma más directa al drenaje que conduce al embalse, lo que podría significar una afección negativa para el grado trófico de la masa de agua. Por otro lado, y según datos recogidos en 2010 por la CHD, se supone la existencia de una población de peces que podría ser muy relevante, destacando por su abundancia la carpa, lo que podría suponer efectos negativos en el estado trófico de la masa de agua debido a procesos asociados a su presencia como la bioturbación del sedimento o el reciclado de nutrientes.

El embalse es una masa de agua típicamente monomíctica (tipología ecológica E-T01), mostrando durante todo el periodo estival/otoñal estudiado en 2016 un patrón de funcionamiento térmico y de oxigenación de la columna de agua muy similar al registrado durante los años previos con registro de datos (2006-2016). A lo largo de la primavera, el aumento de la temperatura del aire provoca que las capas superiores del embalse se vayan calentando progresivamente, comenzando a formarse una incipiente termoclina. Según avanza el verano, si la estratificación permanece el tiempo suficiente, el crecimiento del fitoplancton y la descomposición de la materia orgánica sedimentada provocan que se vaya progresivamente consumiendo el oxígeno en el hipolimnion, al dificultarse la transferencia de oxígeno de las capas superiores de agua a las más cercanas al sedimento, alcanzándose muchos años condiciones anóxicas en el fondo del embalse (1-3 m sobre el sedimento). Al no disponer de datos batimétricos del embalse, se desconoce el volumen y la superficie del sedimento que se encontraría bajo estas condiciones, y por tanto, la relevancia que alcanzaría esta situación para otro tipo de procesos de tipo biogeoquímico.

No obstante, una de las singularidades de este embalse es su baja resistencia a la mezcla de la columna de agua cuando se encuentra estratificado. Ello es debido a su escasa profundidad y a la orografía abierta de su entorno, que facilita la circulación de los vientos y un amplio desarrollo del *fetch*. Esta situación provoca que la estratificación estival se rompa fácilmente en días con fuerte viento o con entradas significativas de agua por lluvias, generando una amplia variabilidad intra e interanual en los valores absolutos de la temperatura del agua. Se han registrado diferencias frecuentes de hasta 10 °C para un mismo patrón y fechas en diferentes años, reflejando la gran sensibilidad de la masa de agua a los factores meteorológicos e hidrológicos externos, así como la escasa o nula inercia térmica frente a ellos. Como consecuencia, a finales de verano o principios de otoño, la temperatura y oxígeno disuelto son habitualmente homogéneos en toda la columna de aqua.

La facilidad de mezcla y la baja profundidad del embalse favorecen también la resuspensión y el transporte de material particulado del fondo y del litoral a toda la masa de agua, por lo que la transparencia es frecuentemente baja debido a la materia orgánica e inorgánica en suspensión, y por tanto, también se reduce la capa fótica. A ello podría contribuir también la bioturbación de las capas superficiales del sedimento por los peces de hábitos bentívoros (carpa). Estas circunstancias son relativamente frecuentes en la época estival, en la que la profundidad de mezcla es muy superior (generalmente llegando al fondo) a la zona fótica, lo que limita la producción primaria fitoplanctónica, incluso aunque la presencia de nutrientes sea elevada, en cuyo caso y paradójicamente, no se alcanzaría el desarrollo potencialmente esperado debido a las limitaciones de penetración de la luz (Dokulil, 1994).

MINISTERIO DE EOMENTO

Durante el verano-otoño de 2016, las concentraciones de los compuestos nitrogenados han sido inferiores a los niveles establecidos para aguas de consumo humano, si bien se han detectado niveles de amonio más significativos en las capas cercanas al sedimento. Los niveles de fósforo total detectados en este periodo se corresponden, según la OCDE, con un estado eutrófico, estando la mayoría en forma orgánica y adsorbido en partículas en suspensión, además de en el sedimento. Por ello, la concentración de formas solubles del fósforo (ortofosfatos) en la columna de agua puede mostrar valores bajos (menos del 1% del fósforo total en el periodo de estudio), ya que las algas y las bacterias lo asimilan rápidamente para su crecimiento según es liberado del sedimento en condiciones reductoras. En el caso del papel limitante del fósforo, el desarrollo de las comunidades fitoplanctónicas depende tanto del aporte externo como del interno, y el efecto de este último puede ser muy relevante en masas de agua poco profundas como es el caso del embalse de Serones, ya que la zona fótica puede alcanzar el fondo durante parte del año. La ocurrencia de periodos de anoxia en el fondo, sucedidos de mezclas rápidas por efecto del viento, puede generar pulsos internos de liberación y disponibilidad del P en toda la masa de agua durante el periodo estival, además de movilizar, resuspender y distribuir por toda la columna de agua, de escasa profundidad, material sedimentado que puede contener formas de resistencia y colonias de cianobacterias, generando situaciones muy propicias para la formación de blooms. Factores que podrían verse incrementados por la actividad de los peces bentívoros si sus poblaciones adquieren un número significativo.

Los valores obtenidos para la concentración de PRS y NID en la columna de agua del embalse a lo largo del verano-otoño de 2016, reflejan una limitación casi simultánea de ambos nutrientes para el desarrollo del fitoplancton durante casi todo el periodo (exceptuando noviembre). Si bien el nitrógeno suele ser un factor limitante menos habitual, en ocasiones llega a serlo en masas de agua muy eutróficas (Claesson & Ryding, 2013), incluso de forma simultánea con el fósforo, situación esta última más habitual de lo esperado (Suttle & Harrison, 1988), y que algunos autores explican por la diferencia en los requerimientos de nutrientes de las distintas especies presentes en la comunidad del fitoplancton (Dodds *et al.*, 2009).

Por sus características morfométricas y ambientales, la sucesión de las especies del fitoplancton en el embalse de Serones parece mostrar un grado de dependencia muy elevado de la aleatoriedad de la meteorología e hidrología en cada año hidrológico, al hallarse sometidos a frecuentes vientos fuertes, condiciones de estratificaciones débiles, y episodios habituales de resuspensión del sedimento que reducen la transparencia del agua. En los muestreos mensuales realizados en el verano-otoño de 2016 se observó una variada composición fitoplanctónica con alternancia de los grupos dominantes a lo largo de todo el periodo. Durante el periodo 2006-2016, en la mayoría de los muestreos el biovolumen de fitoplancton ha superado los 2 mm³/l, exceptuando algunas campañas de 2011, 2013, 2014 y 2016, alcanzándose en septiembre de 2009 un biovolumen excepcionalmente alto (102 mm³/l) debido a la ocurrencia de un *bloom* de cianobacterias.

El contenido de materia orgánica en el sedimento superficial (≈20 cm) no es muy elevado (<15% peso seco), observándose a lo largo del testigo de sedimento obtenido oscilaciones en el porcentaje de materia orgánica, que podrían significar episodios o periodos con diferente productividad de biomasa en el embalse. La concentración de nitrógeno total en el sedimento (1000-6000 mg/kg) se encuentra sensiblemente por debajo del rango habitual en otros embalses estudiados en cuencas

MINISTERIO N

silíceas de la Península Ibérica, y muestra un patrón similar al de la materia orgánica, ya que está relacionada con la producción primaria interna y la concentración de carbono orgánico. El perfil del fósforo total en el testigo de sedimento de Serones muestra el mismo patrón que los de materia orgánica y nitrógeno, por lo que su principal fuente sería la materia orgánica sedimentada en el embalse, *a priori* muy relacionada con la producción primaria en el mismo, pero también en una proporción no estimada, con otras fuentes de materia orgánica externas de la cuenca. En 2016, la tasa media estimada de liberación del fósforo del sedimento (12,13 mg/m²·día) se correspondería con la de un embalse eutrófico, aunque para estimar la carga total anual de fósforo que aportaría teóricamente el sedimento a la masa de agua del embalse, esa tasa media debe ponderarse por el número de días en los que la superficie del sedimento se halla bajo condiciones cercanas a la anoxia, así como por el área del mismo sometida a esa situación. Para realizar estos cálculos se requeriría disponer de la batimetría del embalse y de un seguimiento de la columna de agua con una frecuencia adecuada.

Con respecto a los metales analizados en muestras de agua, en 2016 la mayoría se encuentran por debajo del límite de cuantificación. Únicamente las concentraciones de Fe, Mn y Al en el fondo de la columna de agua en algunas campañas de verano han superado los niveles de calidad establecidos para aguas de consumo humano. La estratificación estival conlleva una disminución de oxígeno disponible en el hipolimnion, lo que favorece los procesos de liberación de metales desde el sedimento. Aunque la concentración de la mayoría de los metales en el sedimento es inferior a los niveles de calidad establecidos en la normativa canadiense (Canadian Ministry of Environment, 2017), la concentración más elevada detectada para el aluminio responde posiblemente a un origen natural, ya que la cuenca está constituida fundamentalmente de cuarzo con tectosilicatos y aluminosilicatos.

Durante el periodo 2006-2016 no se ha alcanzado un potencial ecológico bueno o superior. En 2011 y 2013 se obtuvo un potencial ecológico moderado, siendo deficiente en 2006, 2007, 2014 y 2015. Durante los años 2008, 2009, 2012 y 2016 el potencial ecológico ha sido malo. Por tanto, no se ha logrado el objetivo establecido para el embalse de alcanzar un potencial ecológico bueno a partir del 2015. En el periodo 2010-2016, los datos obtenidos para el cálculo del estado trófico del embalse de Serones (TSI) clasifican el embalse como moderadamente eutrófico o eutrófico, siendo sus valores en 2016 correspondientes a un estado moderadamente eutrófico.

El embalse de Serones se encuentra entre los embalses de la cuenca del Duero en los que se producen frecuentemente *blooms* de cianobacterias. En estos casos, el porcentaje en términos de biomasa fitoplanctónica de cianobacterias es muy superior respecto a los otros grupos algales, como fue el caso de los años 2009, 2012 y 2015. No obstante, las cianobacterias presentan un desarrollo muy variable a lo largo del periodo de estudio, con años en los que su relevancia es mínima (ej. 2008, 2014). Esto estará determinado posiblemente por las variadas condiciones ambientales y limnológicas que se suceden cada año, de forma que sólo se producen los *blooms* cuando se dan unas circunstancias ambientales concretas muy difícilmente predecibles, no siguiendo un patrón anual concreto. Las especies más abundantes en el periodo 2006-2016 fueron *Dolichospermum* sp., *Anabaena circinalis*, *Aphanizomenon* sp. y *Microcystis aeruginosa* (potencialmente productora de microcistinas y geosmina, esta última generadora de malos olores y sabor en el agua).

MINISTERIO

En agosto y septiembre de 2016 el número de células de *Cyanodictyon imperfectum* superó el nivel de alerta II para aguas de consumo humano y el nivel guía II para aguas de baño, 100 000 células/ml, estabecidos por la OMS. No obstante, en términos de biovolumen, fueron principalmente *Dolichospermum* sp., *Anabaena circinalis*, *Woronichinia naegeliana* y *Aphanizomenon* sp. las especies dominantes, todas ellas potencialmente tóxicas. Durante todo el periodo estudiado en 2016, salvo en el mes de junio, el biovolumen de cianobacterias fue superior a 0,02 mm³/l, superándose en agosto, septiembre y noviembre el nivel de alerta I establecido por la OMS para aguas destinadas a la producción de agua potable, 0,2 mm³/l.

Finalmente, y aunque no se han obtenido datos en este estudio ni en años recientes de la población de peces existente en el embalse, desconociéndose por tanto su número y biomasa, en el caso de existir en la actualidad una comunidad ictiológica similar a la estudiada en el año 2010, el papel de la especie que entonces dominaba, la carpa, podría desempeñar un papel relevante en la movilización de fósforo del sedimento, tanto por bioturbación y resuspensión del mismo debido a sus hábitos bentívoros, como por su reciclado y liberación al agua en sus excrementos.

Debido a la complejidad de las interacciones entre los procesos físicos y ecológicos observados en el embalse, de los cuales no se dispone de información suficiente a escala temporal y espacial registrada en el campo, es difícil precisar y cuantificar la relevancia de las diferentes causas y circunstancias que contribuyen a ocasionar la formación de *blooms* de cianobacterias en el embalse de Serones, dependiendo su formación y desarrollo de la combinación de varios factores como la hidrología de la cuenca, la disponibilidad de nutrientes (carga externa e interna) y la relación entre sus concentraciones, la radiación solar y la transparencia del agua, así como la estructura térmica de la columna de agua.

Vistos los resultados analizados y obtenidos en este trabajo, es muy probable que las proliferaciones de algas y de cianobacterias potencialmente tóxicas que han ocurrido estos últimos 10 años en el embalse de Serones tengan como fuente principal de nutrientes una combinación de la carga externa e interna: externa, la entrada difusa por actividades ganaderas, única fuente detectada en la cuenca, y que además, habría ido contribuyendo progresivamente mediante el proceso de sedimentación a la carga interna del embalse; e interna, la liberación de nutrientes del sedimento, principalmente fósforo, por bioturbación, resuspensión y excreción producidos por los peces (presumiblemente dominados por la carpa), y por redisolución de este elemento bajo condiciones de anoxia en las capas profundas del embalse. Se ha observado además, que la estimación de la tasa de liberación del fósforo del sedimento corresponde a un embalse mesotrófico, por lo que el crecimiento de cianobacterias podría estar estimulado en ciertas ocasiones por pulsos de fósforo liberado desde el sedimento.

En líneas generales, se ha mostrado la gran sensibilidad que presenta esta masa de agua frente a factores meteorológicos e hidrológicos, así como la baja estabilidad física de la columna de agua, debido a su volumen y profundidad, aspectos que dificultan la obtención de patrones de funcionamiento y desarrollo de la comunidad fitoplanctónica, y por tanto, la predicción y la obtención de respuestas positivas en la calidad del agua frente a la aplicación de posibles medidas o actuaciones de restauración en la gestión del embalse.

MINISTERIO MINISTERIO
DE FOMENTO PARA LA TRANSICIÓN
ECOLÓGICA

7. RECOMENDACIONES

Se exponen a continuación algunas recomendaciones para la gestión del embalse de Serones, que podrían contribuir a evitar o minimizar la formación de *blooms* de algas o cianobacterias, y mitigar sus consecuencias, así como mejorar el conocimiento de las circunstancias y variables ambientales que intervienen en su formación.

La hipótesis que se concluye del presente estudio acerca del principal origen de los nutrientes que llegan al embalse, es una combinación de una fuente externa cuyo origen sería la actividad ganadera en la cuenca y de la carga interna de fósforo, liberado por un lado por la actividad de fauna ictiológica bentívora y por otro, por los procesos redox que se dan en el sedimento superficial en determinadas circunstancias. No obstante, no ha sido posible cuantificar la carga media anual y su dinámica estacional que entra o se libera en la masa de agua, debido a la falta de datos necesarios para realizar dichos cálculos. Por ello, para poder calcular y caracterizar las cargas externas e internas de nutrientes, se recomienda llevar a cabo las siguientes actuaciones:

7.1. Actuaciones para mejorar el conocimiento del embalse

- a) Disponer de mediciones de caudal en la entrada de los principales tributarios, ríos Voltoya y Tuerto, en cuyos puntos se requeriría analizar los compuestos de nitrógeno y fósforo con una periodicidad al menos mensual. El embalse de Serones está declarado como zona sensible desde 2006, y el Real Decreto 817/2015 (MAGRAMA, 2015) establece que se debe implantar un control operativo para aguas declaradas como sensibles, respondiendo a la necesidad de conocer los aportes de nutrientes a una masa de agua declarada como zona sensible, evaluar si tendrán consecuencias sobre el nivel de eutrofización y, en ese caso, prever su eliminación. En este sentido, se sugiere actualizar el inventario de presiones para que se considere y cuantifique de forma real el origen de los nutrientes en la cuenca, ya que actualmente, respecto a la ganadería, es una zona catalogada con poca afectación (CHD, 2015).
- b) Para evaluar e interpretar de forma más precisa a lo largo del año los ciclos de entrada de nutrientes al embalse y los cambios fisicoquímicos (temperatura, oxígeno disuelto, pH, turbidez, nutrientes, etc.) y biológicos (fitoplancton y pigmentos) que se producen en la columna de agua, se recomienda obtener en el entorno del embalse datos de variables meteorológicas básicas (Ta aire, precipitación, radiación y viento) a escala diaria.
- c) Además, la relevancia de las interacciones a corto plazo entre las especies formadoras de blooms y las variables abióticas, hace recomendable la disponibilidad de datos ambientales y limnológicos con mayor resolución temporal (quincenal), al tratarse de un medio muy cambiante por su escaso tamaño y profundidad. Junto con las mediciones de transparencia del agua mediante el Disco de Secchi, o si es posible, realizando perfiles con un sensor PAR, es recomendable también incluir la medida de sólidos en suspensión en la columna de agua para una mejor interpretación de la relación entre nutrientes, zona fótica y producción primaria fitoplanctónica. Aunque costoso, un sistema de

MINISTERIO DE FOMENTO

monitorización continua automático (ej. plataforma perfiladora) ofrecería una información de gran relevancia para la adopción de medidas y toma de decisiones a muy corto plazo en la gestión del embalse, cuya eficacia ya se ha demostrado en otros embalses (Rouen *et al.*, 2000, 2005; Moreno-Ostos *et al.*, 2009, Luengo *et al.*, 2014),

- d) Un estudio del sedimento con mayor resolución espacial para conocer la carga interna en toda la cubeta del embalse (al menos 3 puntos de muestreo en presa, zona media y cola), complementaría el seguimiento periódico de la carga externa de nutrientes, lo que permitiría cuantificar el balance de masas de nutrientes en el embalse y dimensionar de forma más precisa las posibles medidas de gestión o actuaciones de restauración, mejorando la capacidad de predicción de la respuesta del embalse en diferentes escenarios ambientales o climáticos.
- e) En relación con la cuantificación de la carga interna, es recomendable hacer un estudio que cuantifique la densidad, biomasa y composición de peces existente en el embalse, con el fin de determinar el papel actual que desempeñan en la resuspensión, liberación y reciclado de fósforo a la masa de agua, cuyos efectos sobre la turbidez y la producción primaria del embalse pueden ser muy significativos. En el caso de obtenerse cifras muy elevadas (<100-1000 kg/ha) de la biomasa de peces como la carpa, especie introducida con conocidos efectos muy negativos en los ecosistemas acuáticos, sería recomendable estudiar la posibilidad de realizar descastes periódicos de carpas manteniendo una densidad y biomasa con niveles poco relevantes para los procesos de liberación de fósforo del sedimento en los que se halla implicada esta especie. El uso de métodos de pesca no letales, como la pesca eléctrica, que permitan seleccionar la especie a extraer del embalse de las capturas, evitaría afectar a otras especies autóctonas presentes.

7.2. Actuaciones para corregir los problemas existentes

- f) Respecto a las posibles medidas de gestión para reducir la carga externa difusa de nutrientes, se recomienda limitar o impedir el acceso del ganado a las inmediaciones de los cursos de agua que vierten al embalse mediante la instalación de vallas o cercados, proporcionando el agua necesaria para abrevar en balsas, tanques o albercas dispuestas en otras zonas alejadas de esos cursos de agua. Al eliminar la presión del pisoteo del ganado en las orillas de los cursos de agua, también se reduciría la erosión y crecería más la vegetación hidrófila, actuando a modo de filtro verde del agua de escorrentía, y contribuyendo a reducir la entrada de nutrientes difusos a los cursos de agua. Los efectos positivos de este tipo de medidas ya han sido descritos en otros casos (Shuyler, 1980). En la figura 4 se muestran aquellas zonas verdes de pasto o tramos de cauces de la cuenca del embalse en los que podría considerarse la posibilidad de aplicar esta medida, por haberse detectado en ellas una mayor presencia de ganado en la época estival.
- g) En lo referente a la carga interna de nutrientes (sedimento del embalse) relacionada con los procesos físico-químicos, para reducir la cantidad de fósforo liberado del sedimento cuando se producen condiciones anóxicas en el fondo de la columna de agua, se recomienda adoptar métodos encaminados a evitar o minimizar la estratificación de la columna y

MINISTERIO MINISTERIO
DE FOMENTO PARA LA TRANSICIÓN ECOLÓGICA

por tanto, la formación de un hipolimnion anóxico. Además, la reducción del periodo de anoxia en la capa profunda o hipolimnion, evitaría o minimizaría también la liberación de metales del sedimento al agua, mejorando notablemente su calidad para el uso de abastecimiento de agua potable. La única opción técnicamente disponible para lograr este objetivo sería utilizar la toma más profunda del embalse para la obtención de agua para abastecimiento, en vez de la superficial, cuando esta capa profunda se encuentra aún en buenas condiciones aceptables de calidad, favoreciendo un retraso en la estratificación de la masa de agua y la formación de un hipolimnion o capa profunda anóxica. No obstante, para valorar si esta medida puede ser realmente eficaz o relevante para obtener los objetivos deseados, sería preciso conocer la batimetría de la cubeta del embalse, ya que de ello dependen las dimensiones de la capa de agua profunda susceptible de alcanzar condiciones de anoxia.

Es importante poner de manifiesto que, al existir una carga interna significativa de nutrientes (P especialmente) en el sedimento, las posibles actuaciones que se adoptasen sobre las fuentes externas (principalmente el ganado), reduciendo la carga de nutrientes que proviene de la cuenca, probablemente tuviesen efectos positivos detectables a medio o largo plazo, dependiendo además de las condiciones hidrológicas y meteorológicas que ocurriesen cada año. Por ello, a corto plazo, y en años en los que se observe una evolución del embalse hacia situaciones muy desfavorables, sería necesario adoptar o valorar la viabilidad de otro tipo de medidas con posible carácter mitigador de los efectos de la eutrofización del embalse. Algunas de estas posibles medidas serían las siguientes:

- h) Aunque existen técnicas de eliminación activa del hipolimnion anóxico (ej. "tubo de Olszewski"), con resultados positivos en la mayoría de los casos, requieren instalaciones hidráulicas con costes elevados (Cooke et al., 1993). Una posibilidad más económica sería una adecuada gestión de la salida del agua del embalse, que evite la estratificación y minimice o impida la formación del hipolimnion, mediante la toma de agua de los niveles más profundos antes de que se consolide la estratificación tras el periodo invernal, tal y como se ha sugerido en el punto g). Para ello, se requeriría una monitorización continua de la temperatura y oxígeno disuelto en la columna de agua, lo que facilitaría una respuesta rápida en las decisiones de gestión de las tomas del agua, encaminadas a conseguir un balance positivo de la eliminación de agua en las capas profundas frente a la tasa de agotamiento de oxígeno disuelto en las mismas cuando se estabiliza la columna de agua.
- i) La utilización de mecanismos de aireación o mezcla de la columna de agua con el fin de evitar la estratificación y la formación del hipolimnion anóxico tendría previsiblemente efectos positivos sobre la ocurrencia de blooms de cianobacterias, ya que afectaría negativamente a sus requerimientos ecológicos. Sin embargo, la respuesta de otros grupos del fitoplancton (algas verdes) a esos procesos de mezcla sería más difícil de predecir, así como su efecto en la calidad del agua del embalse. En general, las experiencias llevadas a cabo en numerosos embalses o lagos de diferente profundidad con actuaciones de desestratificación, bien por circulación artificial o bien por oxigenación del hipolimnion, han sido muy variables y no siempre exitosas (Gächter & Müller, 2003; Hupfer & Lewndowski, 2008; Pastorok et al., 1980). Además, los resultados son

MINISTERIO DE EOMENTO

especialmente más difíciles de predecir en cuerpos de agua de poca profundidad, como es el caso del embalse de Serones. La aireación exclusiva del hipolimnion no es siempre viable técnicamente en embalses de poca profundidad, ya que puede afectar a las capas superiores, por lo que generalmente sólo es posible realizar una mezcla completa de la columna de agua en este tipo de masas.

No obstante, hay ejemplos documentados de actuaciones de este tipo con gran éxito. Es el caso de un lago en Wisconsin (USA), de dimensiones similares al embalse de Serones y problemas de ocurrencia de *blooms* de cianobacterias a finales de la época estival, ocasionados por la liberación de fósforo del sedimento durante el periodo de estratificación estival con anoxia en el fondo de la masa de agua (Holdren *et al.*, 2001). Como medida de restauración, se instaló un **sistema de aireación que evitaba la estratificación de la columna de agua, funcionando desde antes de comenzar este proceso en primavera hasta el otoño**. El resultado fue una reducción del 70 % del fósforo liberado del sedimento y la ausencia de formación de *blooms* en el lago.

j) La opción de retirar sedimentos de la cubeta del embalse para reducir o eliminar la carga interna se ha demostrado como efectiva pero resulta costosa económicamente, y además requeriría vaciar el embalse y tener una alternativa donde conducir o transportar los sedimentos retirados, operación condicionada por la composición química que presentasen.

Para llevar a cabo todas estas medidas, sería necesario desarrollar un plan de gestión elaborado y consensuado por un grupo de trabajo constituido por diferentes especialistas y actores implicados: Confederación Hidrográfica, Ayuntamiento de Ávila, Junta de Castilla y León, técnicos-investigadores, y los ganaderos-propietarios de las fincas. Este plan debería contener un programa básico de control periódico (mínimo mensual) de la entrada de nutrientes al embalse y de la limnología de la masa de agua, como herramienta no sólo de gestión en tiempo real, sino también de evaluación de su eficacia y de la respuesta del embalse a este plan.

8. BIBLIOGRAFÍA

- Becker, V., Caputo, L., Ordóñez, J., Marcé, R., Armengol, J., Crossetti, L.O. & Huszar, V.L.M.
 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir.
 Water Research, 44: 3345-3354.
- Breukelaar, A.W., Lammens, E.H.H.R., Klein Breteler, J.G. B. & Tatrai, I. 1994. Effects of benthivorous bream (*Abramis brama*) and carp (*Cyprius carpio*) on sediment resuspension and concentration of nutrients and chlorophyll-a. *Freshwater Biology*, 32: 113- 121.
- Brookes, J.D., Burch, M. D., Lewis, D. M. & Reagle, R.H. 2008. Artificial mixing for destratification and control of cyanobacterial growth in reservoirs. CRS for Water Quality and Treatment. Research Report 59. Salsbury. 59 pp.
- Canadian Ministry of Environment, 2017. British Columbia Working Water Quality Guidelines:
 Aquatic Life, Wildlife & Agriculture. Water Protection & Sustainability Branch. 37 pp. (http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/bc_env_working_water_quality_guidelines.pdf).

MINISTERIO MINISTERIO
DE FOMENTO PARA LA TRANSICIÓN
ECOLÓGICA

- Carlson, R.E. 1977. A Trophic State Index for Lakes. Limnology and Oceanography, 22: 361.
- CEDEX. 2014. Estudio de la calidad del agua del embalse de Vilasouto y propuesta para su gestión. Informe técnico para el Ministerio de Agricultura, Alimentación y Medio Ambiente. Confederación Hidrográfica del Miño-Sil. 157 pp.
- CEDEX. 2016a. Servicio técnico para el programa de control limnológico bianual intensivo del Lago de Sanabria. Seguimiento de blooms en embalse. Seguimiento intensivo en el embalse de Pontón Alto (Segovia). Informe técnico para el Ministerio de Agricultura, Alimentación y Medio Ambiente. Confederación Hidrográfica del Duero. 59 pp.
- CEDEX. 2016b. Estudio de la calidad del agua del embalse de As Conchas. Informe técnico para el Ministerio de Agricultura, Alimentación y Medio Ambiente. Confederación Hidrográfica del Miño-Sil.116 pp.
- Chorus, I. & Bartram, J. (Eds.). 1999. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Word Health Organization. 247 pp.
- Claesson, A. & Ryding, S.O. 2013. Nitrogen—a growth limiting nutrient in eutrophic lakes.
 Proceedings of the Conference on Nitrogen as a Water Pollutant, 8(4): 291-299.
- Confederación Hidrográfica del Duero. 2015. Plan Hidrológico de la parte española de la demarcación hidrográfica del Duero (2015-2021). 482 pp.
- Cooke, G. D., Welch, E.B., Peterson, S.A. & Newroth, P.R. 1993. Restoration and Management of Lakes and Reservoirs. Boca Raton, FL: CRC, 2005. Lewis Pub. 548 pp.
- Luengo, R., López Fidalgo, A., Monteoliva, A.P., Monná, A., Castromán, J.L. & González, M.A.
 2014. Sistema de teledetección de alta resolución espaciotemporal para gestión integral de cuenca hidrográfica. CONAMA, 2014: 22 pp.
- Dodds, W.K., Johnson, K.R. & Priscu, J.C. 2009. Simultaneous Nitrogen and Phosphorus Deficiency in Natural Phytoplankton Assemblages: Theory, Empirical Evidence, and Implications for Lake Management. *Lake and Reservoir Management*, 5(1): 21-26.
- Dokulil, M.T. 1994. Environmental control of phytoplankton productivity in turbulent turbid systems. *Hydrobiologia*, 289: 65-72.
- Engstrom, D.R. & Wright, H.E. 1984. Chemical stratigraphy of lake sediments as a record of environmental change. En: Lake Sediments and Environmental History. Studies in palaeolimnology and palaeoecology in honour of Winifred Tutin (Eds. E. Y. Haworth y J.W.G. Lund). Leicester University Press, pp. 11-67.
- Gächter, R. & Müller, B. 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. *Limnology & Oceanography*, 48(2): 929-933.
- Golterman, H.L. 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments.
 Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow. 251 pp.
- Griffiths, D. 2006. The direct contribution of fish to lake phosphorus cycles. Ecology of Freshwater Fish, 15: 86-95.
- Holdren, C., Jones, W. & Taggart, J. 2001. Managing Lakes and Reservoirs. N. Am. Lake Manage. Soc. and Terrene Inst. in coop. with U.S. EPA. Madison. 382 pp.
- Hudnell, H.K. (ed.), 2008. Cyanobacterial Harmful Algal Blooms. State of the Science and Research Nedds. United States Environmental Protection Agency, Triangle Park, NS, USA. 949 pp.

- Hupfer, M. & Lewandowski, J. 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. *Internat. Rev. Hydrobiol.*, 93(4-5):415-432.
- Huser, B.J., Bajer, P.G., Chizinski, C.J, & Sorensen, P.W. 2016. Effects of common carp (Cyprinus carpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. *Hydrobiologia*, 763: 23-33.
- Jacoby, J.M., Collier, D.C., Welch, E.B., Hardy, F.J. & Crayton, M. 2000. Environmental factors associated with a toxic *bloom* of *Microcystis aeruginosa*. *Canadian Journal of Fisheries and Aquatic Sciences*, 57: 231-340.
- Jeffrey, S.W. & Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophylls a,b, c1 and c2 in higher plants, algae and natural phytoplankton. *Biochem. Physiol. Pflanz.* 167:191-194
- Klaveness, D., 1988. Ecoloy of Cryptomonadida: a first review. In: Sandgren, C.D. (Ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge, pp. 105e133.
- Kosten, S., Huszar, V.L.M., Bécares, E., Costa, L.S., Van Donk, E., Hansson, L.A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Nöges, T., Romo, S. & Scheffer, M. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. *Global Change Biology*, 18: 118-126.
- Lee, R.W. & Rast, W. 1997. Light attenuation in a shallow, turbid reservoir, Lake Houston, Texas.
 USGS Water-Resources Investigations Report 97-4064. 28 pp.
- Lewis, W.M. 1983. A revised classification of lakes based on mixing. Can. J. Fish Aquat. Sci., 40: 1779-1787.
- Li, X., Dreher, T.W. & Li, R. 2016. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae, 54: 54-68.
- López, M.P. 2009. Los sedimentos y su incidencia en la eutrofización de los embalses. Caso del río Lozoya. *Ingeniería del Agua*, 16: 273-283.
- Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). 2015. Real Decreto 817/2015, del 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. *Boletín Oficial del Estado*, 219: 80582-80677.
- Ministerio de Medio Ambiente y Medio Rural y Marino (MARM). 2011a. Catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas. 85 pp.
- Ministerio de Medio Ambiente, y Medio Rural y Marino (MARM). 2011b. Real Decreto 60/2011, de 21 de enero, sobre las normas de calidad ambiental en el ámbito de la política de aguas. Boletín Oficial del Estado, 19: 6854-6870.
- Ministerio de la Presidencia. 2003. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. Boletín Oficial del Estado, 45: 7228-7245.
- Mohamed, Z.A. & Al Shehri, A.M. 2010. Microcyistin production in epiphytic cyanobacteria on submerged macrophytes. *Toxicon*, 55: 1346-1352.
- Moreno-Ostos, E., Cruz-Pizarro, L., Basanta, A. & Glen George, D. 2009. The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. *Aquatic Ecology*, 43: 271-284.

MINISTERIO MINISTERIO
DE FOMENTO PARA LA TRANSICIÓN
ECOLÓGICA

- Nürnberg, G. 1988. Prediction of Phosphorus Release Rates from Total and Reductant Soluble Phosphorus in Anoxic Lake Sediments. *Canadian Journal of Fisheries and Aquatic Sciences*, 45: 453-463.
- Nürnberg, G. 2009. Assessing internal phosphorus load-Problems to be solved. Lake and Reservoir Management, 25: 419-432.
- OCDE (Organización para la Cooperación y Desarrollo Económico). 1982. Eutrophication of waters. Monitoring, assessment and control. Paris. 154 pp.
- Parra, J.P. & Espinosa, L.F., 2008. Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a Rhizophora Mangle en el río Sevilla- Ciénaga Grande de Santaa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 37:95-110.
- Padisák, J., Crossetti, L.O. & Naselli-Flores, L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. *Hydrobiologia*, 621:1-19.
- Pastorok, R.A., Ginn, T.C. & Lorenzen, M.W. 1980. Evaluation of aeration/circulation as a lake restoration technique. EPA Draft Final rep. TC-3947. U.S. Environ. Prot. Agency.
- Reynolds, C.S. 1996. Further remarks on phytoplankton ecology and trophic degree: community structure and dynamics in relation to the trophic spectrum. Unpublished manuscript.
- Reynolds, C.S., Huszar, V., Kurk, C., Naselli-Flores, L. & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. *Journal of Plankton Research*, 24, 417-428.
- Rouen, M.A., George D.G. & Hewitt, D.P. 2000. Using an automatic monitoring station to assess the impact of episodic mixing on the seasonal succession of phytoplankton. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 27: 2972-2976.
- Rouen, M.A., George, D.G., Kelly, J.L. & Lee, M.J. 2005. High-resolution automatic water quality monitoring systems applied to catchment and reservoir monitoring. *Freshwater Forum*, 23: 20-37.
- Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H. & Quevaullier, P. 2001.
 Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freswater sediments. *Fresenius Journal of Analytical Chemistry*, 370: 224-228.
- Shear, H., Nalewajko, C. & Bacchus, H.M. 1976. Some aspects of the ecology of Melosira spp. in Ontario Lakes. *Hydrobiologia*, 50: 173-176.
- Shuyler, L.R. 1980. Source control of animal wastes for lake watersheds. *International Symposium on Inland Waters and Lake Restoration*. US-EPA. 257-259.
- Somdee, T., Kaewsan, T. & Somdee, A., 2013. Monitoring toxic cyanobacteria and cyanotoxins (microcystins and cylindrospermopsins) in four recreational reservoirs (Khon Kaen, Thailand). *Environmental Monitoring and Assessment*, 185: 9521-9529.
- Sommer, U., Gliwicz, Z.M., Lampert, W., Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh-waters. *Arch. Hidrobiol.* 106, 433e471.
- Suttle, C.A. & Harrison, P. 1988. Ammonium and phosphate uptake rates, N:P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. *Limnol. & Ocean.*, 33(2): 186-202.
- Utermöhl, H. 1958. Zur Vervollkomrnnung ver quantitativen Phytoplankton-Methodic. Mitt. Int. Verein. Limnol., 9: 1-38.
- Vanni, M.J. 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33: 341–370.
- Wacklin, P., Hoffman, L. & Komárek, J. 2009. Nomenclature validation of the genetically revised cyanobacterial genus *Dolichospermum* (Ralfs ex Bornet et Flahault) comb. nova. *Fottea*, 9: 59-64.

MINISTERIO M

- Wetzel, R.G. 2001. Limnology. Lake and River Ecosystems. Third Edition. Elservier, California, USA, 1006 pp.
- Whitton, B. A. & Potts, M. (eds.). 2000. The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, The Netherlands. 669 pp.

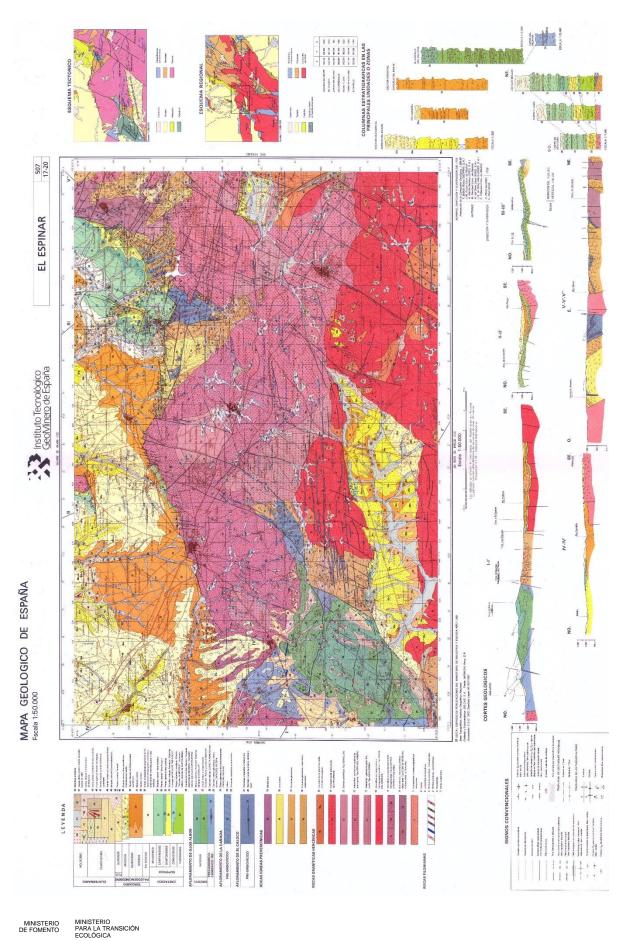
9. EQUIPO DE TRABAJO

Este trabajo ha sido realizado por el siguiente personal del Área de Medio Ambiente Hídrico del Centro de Estudios Hidrográficos del CEDEX: Manuel Toro, María Peg, Almudena Domínguez, Carlos Nuño, Ana María Alonso, Guillermo Cobo y Ramiro Barreales, con el apoyo de Samuel Arias en los trabajos de campo. Las determinaciones taxonómicas y el análisis del fitoplancton han sido realizados por Adel el Anjoumi el Amrani (Cimera Estudios Aplicados, S.L.).

Madrid, 13 de marzo de 2019

El Director del Trabajo y Jefe del Área de Medio Ambiente Hídrico

> D. Manuel Toro Velasco Ldo. Ciencias Biológicas


PARA LA TRANSICIÓN ECOLÓGICA

ANEXO 1. MAPA GEOLÓGICO DE LA ZONA DE ESTUDIO

DE FOMENTO

ANEXO 2. DATOS DE PERFILES CON SONDA MULTIPARAMÉTRICA EN 2016

1 de 2

MINISTERIO DE FOMENTO

Embalse de Serones

Punto de muestreo: Presa

Datos obtenidos con sonda multiparamétrica EXO 2 - YSI

Fecha	Prof. (m)	Tª (ºC)	Odis (mg/L)	Odis (%)	рН	Conduct. (μS/cm)	Turbidez (FNU)	Clorofila (µg/I)	BGA (μg/l)
23/06/2016	0,0	19,40	8,68	94,30	7,88	88,80	4,37	7,56	0,25
23/06/2016	1,0	19,38	8,73	94,80	7,90	89,00	4,13	10,67	0,38
23/06/2016	2,0	19,28	8,69	94,30	7,84	88,90	4,17	10,82	0,39
23/06/2016	3,0	19,27	8,63	93,50	7,80	88,90	4,43	11,04	0,38
23/06/2016	4,0	19,27	8,59	93,00	7,77	88,90	4,24	10,67	0,31
23/06/2016	5,0	19,26	8,54	92,60	7,76	88,90	4,53	12,88	0,45
23/06/2016	6,0	16,45	5,32	55,00	7,13	74,80	5,08	10,72	0,33
23/06/2016	7,0	15,36	2,85	28,50	6,75	90,80	6,50	9,13	0,31
23/06/2016	8,0	15,17	2,17	21,60	6,69	92,00	7,21	6,51	0,13
25/08/2016	0,0	21,85	6,89	78,50	7,80	101,60	-	8,16	1,68
25/08/2016	1,0	21,85	6,87	78,40	7,78	101,60	-	9,01	1,62
25/08/2016	2,0	21,85	6,87	78,30	7,78	101,50	-	9,30	1,50
25/08/2016	3,0	21,85	6,83	78,00	7,77	101,60	-	8,99	1,47
25/08/2016	4,0	21,85	6,76	77,30	7,74	101,60	-	9,40	1,47
25/08/2016	5,0	21,80	6,42	72,90	7,67	101,90	-	9,42	1,46
25/08/2016	6,0	20,86	0,60	9,00	-	106,60	-	6,50	-
25/08/2016	7,0	20,86	0,60	9,00	-	106,60	-	6,50	-
14/09/2016	0,0	19,76	6,36	69,60	7,43	100,70	6,71	10,42	1,25
14/09/2016	1,0	19,83	6,26	68,50	7,40	100,80	6,84	10,89	1,15
14/09/2016	2,0	19,80	6,20	67,90	7,39	100,80	6,78	9,90	1,08
14/09/2016	3,0	19,79	6,17	67,60	7,38	100,80	7,10	11,51	1,14
14/09/2016	4,0	19,77	6,16	67,50	7,38	100,90	7,26	11,37	1,13
14/09/2016	5,0	19,72	6,15	67,30	7,38	100,90	7,14	11,13	1,11
14/09/2016	6,0	19,72	6,15	67,30	7,38	100,90	7,13	11,31	1,12
14/09/2016	7,0	19,68	6,11	66,70	7,36	100,90		11,23	1,21
11/10/2016	0,0	14,92	7,60	75,20	7,68	100,80	2,52	18,80	0,73
11/10/2016	1,0	14,94	7,48	74,00	7,61	101,10	2,44	18,98	0,82
11/10/2016	2,0	14,93	7,38	73,20	7,57	101,10	2,59	19,68	0,77
11/10/2016	3,0	14,92	7,34	72,70	7,55	101,10	2,63	20,16	0,75
11/10/2016	4,0	14,91	7,31	72,40	7,54	101,10	2,67	28,23	0,87
11/10/2016	5,0	14,88	7,32	72,30	7,54	101,10	2,68	22,64	0,88
11/10/2016	6,0	14,86	7,42	73,30	7,55	101,10	2,38	28,63	0,98
11/10/2016	6,5	14,86	7,42	73,30	7,55	101,10	2,38	28,63	0,98
10/11/2016	0,0	8,98	9,36	80,90	7,78	106,60	2,40	17,61	0,87
10/11/2016	0,5	8,98	9,34	80,80	7,77	106,60	2,38	17,26	0,96
10/11/2016	1,0	8,98	9,32	80,60	7,77	106,60	2,53	17,91	0,95
10/11/2016	2,0	8,95	9,27	80,20	7,75	106,60	2,47	18,44	0,98
10/11/2016	3,0	8,92	9,23	79,80	7,74	106,60	2,38	17,96	0,94
10/11/2016	4,0	8,90	9,18	79,20	7,72	106,60	2,43	17,74	0,96
10/11/2016	5,0	8,87	9,12	78,60	7,70	106,60	2,62	17,62	0,92
10/11/2016	6,0	8,89	8,26	71,30	7,53	106,50	2,46	17,36	1,04

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CENTRO DE ESTUDIOS Y EXPERIMENTACIÓN DE OBRAS PÚBLICAS

ANEXO 3. DATOS DE ANÁLISIS QUÍMICOS DEL AGUA EN 2016

MINISTERIO DE FOMENTO

CEDEX

Embalse de Serones Punto de muestreo: Presa

Laboratorio de análisis: CEH (CEDEX)

Laboratorio de	analisis: CEH (CEDEX)			Profundidad	Cono
Fecha	Parámetro	Unidad	Valor	(m)	Capa muestreada
23/06/2016	Calcio	mg/L	7,500	3,25	Zona fótica
23/06/2016	Magnesio	mg/L	1,700	3,25	Zona fótica
23/06/2016	Sodio	mg/L	6,600	3,25	Zona fótica
23/06/2016	Potasio	mg/L	0,800	3,25	Zona fótica
23/06/2016	Carbonatos	mg/L	0,750	3,25	Zona fótica
23/06/2016	Bicarbonatos	mg/L	42,700	3,25	Zona fótica
23/06/2016	Fluoruros	mg/L	0,073	3,25	Zona fótica
23/06/2016	Cloruros	mg/L	5,335	3,25	Zona fótica
23/06/2016	Nitritos	mg/L	0,024	3,25	Zona fótica
23/06/2016	Bromuros	mg/L	0,010	3,25	Zona fótica
23/06/2016	Nitratos	mg/L	0,072	3,25	Zona fótica
23/06/2016	Ortofosfatos	mg/L	0,005	3,25	Zona fótica
23/06/2016	Sulfatos	mg/L	1,046	3,25	Zona fótica
23/06/2016	Nitritos	mg/L N	0,007	3,25	Zona fótica
23/06/2016	Nitratos	mg/L N	0,016	3,25	Zona fótica
23/06/2016	Amonio	mg/L	0,027	3,25	Zona fótica
23/06/2016	Amonio	mg/L N	0,021	3,25	Zona fótica
23/06/2016	Suma formas nitrogenadas	mg/L N	0,045	3,25	Zona fótica
23/06/2016	Nitrógeno total	mg/L N	0,542	3,25	Zona fótica
23/06/2016	Ortofosfatos	μg/L P	1,630	3,25	Zona fótica
23/06/2016	Fosforo disuelto	μg/L P	13,940	3,25	Zona fótica
23/06/2016	Fosforo total	μg/L P	28,710	3,25	Zona fótica
23/06/2016	Dureza calculada	mg/L CaCO3	25,730	3,25	Zona fótica
23/06/2016	Calcio	mg/L	7,700	5,5	Metalimnion
23/06/2016	Magnesio	mg/L	1,700	5,5	Metalimnion
23/06/2016	Sodio	mg/L	6,600	5,5	Metalimnion
23/06/2016	Potasio	mg/L	0,800	5,5	Metalimnion
23/06/2016	Carbonatos	mg/L	0,750	5,5	Metalimnion
23/06/2016	Bicarbonatos	mg/L	42,700	5,5	Metalimnion
23/06/2016	Fluoruros	mg/L	0,081	5,5	Metalimnion
23/06/2016	Cloruros	mg/L	5,476	5,5	Metalimnion
23/06/2016	Nitritos	mg/L	0,027	5,5	Metalimnion
23/06/2016	Bromuros	mg/L	0,010	5,5	Metalimnion
23/06/2016	Nitratos	mg/L	0,063	5,5	Metalimnion
23/06/2016	Ortofosfatos	mg/L	0,005	5,5	Metalimnion
23/06/2016	Sulfatos	mg/L	1,068	5,5	Metalimnion
23/06/2016	Nitritos	mg/L N	0,008	5,5	Metalimnion
23/06/2016	Nitratos	mg/L N	0,014	5,5	Metalimnion
23/06/2016	Amonio	mg/L	0,036	5,5	Metalimnion
23/06/2016	Amonio	mg/L N	0,028	5,5	Metalimnion
23/06/2016	Suma formas nitrogenadas	mg/L N	0,050	5,5	Metalimnion
23/06/2016	Nitrógeno total	mg/L N	0,721	5,5	Metalimnion
23/06/2016	Ortofosfatos	μg/L P	1,630	5,5	Metalimnion
23/06/2016	Fosforo disuelto	μg/L P	14,590	5,5	Metalimnion
23/06/2016	Fosforo total	μg/L P	34,600	5,5	Metalimnion
23/06/2016	Dureza calculada	mg/L CaCO3	26,230	5,5	Metalimnion
23/06/2016	Calcio	mg/L	8,000	8	Fondo

MINISTERIO DE FOMENTO

23/06/2016	Magnesio	mg/L	1,800	8	Fondo
23/06/2016	Sodio	mg/L	6,800	8	Fondo
23/06/2016	Potasio	mg/L		8	Fondo
	Carbonatos		0,900	o 8	
23/06/2016		mg/L	0,750		Fondo
23/06/2016	Bicarbonatos	mg/L	42,700	8	Fondo
23/06/2016	Fluoruros	mg/L	0,103	8	Fondo
23/06/2016	Cloruros	mg/L	5,736	8	Fondo
23/06/2016	Nitritos	mg/L	0,019	8	Fondo
23/06/2016	Bromuros	mg/L	0,010	8	Fondo
23/06/2016	Nitratos	mg/L	0,101	8	Fondo
23/06/2016	Ortofosfatos	mg/L	0,005	8	Fondo
23/06/2016	Sulfatos	mg/L	1,197	8	Fondo
23/06/2016	Nitritos	mg/L N	0,006	8	Fondo
23/06/2016	Nitratos	mg/L N	0,023	8	Fondo
23/06/2016	Amonio	mg/L	0,227	8	Fondo
23/06/2016	Amonio	mg/L N	0,176	8	Fondo
23/06/2016	Suma formas nitrogenadas	mg/L N	0,205	8	Fondo
23/06/2016	Nitrógeno total	mg/L N	0,800	8	Fondo
23/06/2016	Ortofosfatos	μg/L P	1,630	8	Fondo
23/06/2016	Fosforo disuelto	μg/L P	35,040	8	Fondo
23/06/2016	Fosforo total	μg/L P	38,340	8	Fondo
23/06/2016	Dureza calculada	mg/L CaCO3	27,391	8	Fondo
25/08/2016	Calcio	mg/L	7,700	1,62	Zona fótica
25/08/2016	Magnesio	mg/L	1,800	1,62	Zona fótica
25/08/2016	Sodio	mg/L	7,500	1,62	Zona fótica
25/08/2016	Potasio	mg/L	1,200	1,62	Zona fótica
25/08/2016	Carbonatos	mg/L	0,750	1,62	Zona fótica
25/08/2016	Bicarbonatos	mg/L	46,970	1,62	Zona fótica
25/08/2016	Fluoruros	mg/L	0,103	1,62	Zona fótica
25/08/2016	Cloruros	mg/L	4,493	1,62	Zona fótica
25/08/2016	Nitritos	mg/L	0,001	1,62	Zona fótica
			·	1,62	Zona fótica
25/08/2016	Bromuros	mg/L	0,013	·	
25/08/2016	Nitratos	mg/L	0,059	1,62	Zona fótica
25/08/2016	Ortofosfatos	mg/L	0,008	1,62	Zona fótica
25/08/2016	Sulfatos	mg/L	0,972	1,62	Zona fótica
25/08/2016	Nitritos	mg/L N	0,001	1,62	Zona fótica
25/08/2016	Nitratos	mg/L N	0,013	1,62	Zona fótica
25/08/2016	Amonio	mg/L	0,004	1,62	Zona fótica
25/08/2016	Amonio	mg/L N	0,003	1,62	Zona fótica
25/08/2016	Suma formas nitrogenadas	mg/L N	0,017	1,62	Zona fótica
25/08/2016	Nitrógeno total	mg/L N	1,723	1,62	Zona fótica
25/08/2016	Ortofosfatos	μg/L P	2,655	1,62	Zona fótica
25/08/2016	Fosforo disuelto	μg/L P	14,600	1,62	Zona fótica
25/08/2016	Fosforo total	μg/L P	53,810	1,62	Zona fótica
25/08/2016	Dureza calculada	mg/L CaCO3	26,642	1,62	Zona fótica
25/08/2016	Calcio	mg/L	8,500	7	Fondo
25/08/2016	Magnesio	mg/L	1,900	7	Fondo
25/08/2016	Sodio	mg/L	8,000	7	Fondo
25/08/2016	Potasio	mg/L	1,500	7	Fondo
25/08/2016	Carbonatos	mg/L	0,750	7	Fondo
25/08/2016	Bicarbonatos	mg/L	53,680	7	Fondo
25/08/2016	Fluoruros	mg/L	0,097	7	Fondo
			- ,		

MINISTERIO DE FOMENTO

CEDEX

25/08/2016	Cloruros	mg/L	5,180	7	Fondo
25/08/2016	Nitritos	mg/L	0,003	7	Fondo
25/08/2016	Bromuros	mg/L	0,013	7	Fondo
25/08/2016	Nitratos	mg/L	0,070	7	Fondo
25/08/2016	Ortofosfatos	mg/L	0,005	7	Fondo
25/08/2016	Sulfatos	mg/L	0,976	7	Fondo
25/08/2016	Nitritos	mg/L N	0,001	7	Fondo
25/08/2016	Nitratos	mg/L N	0,016	7	Fondo
25/08/2016	Amonio	mg/L	0,090	7	Fondo
25/08/2016	Amonio	mg/L N	0,070	7	Fondo
25/08/2016	Suma formas nitrogenadas	mg/L N	0,087	7	Fondo
25/08/2016	Nitrógeno total	mg/L N	2,492	7	Fondo
25/08/2016	Ortofosfatos	μg/L P	1,630	7	Fondo
25/08/2016	Fosforo disuelto	μg/L P	12,630	7	Fondo
25/08/2016	Fosforo total	μg/L P	58,140	7	Fondo
25/08/2016	Dureza calculada	mg/L CaCO3	29,051	7	Fondo
14/09/2016	Calcio	mg/L	9,200	1,87	Zona fótica
14/09/2016	Magnesio	mg/L	2,100	1,87	Zona fótica
14/09/2016	Sodio	mg/L	7,900	1,87	Zona fótica
14/09/2016	Potasio	mg/L	1,000	1,87	Zona fótica
14/09/2016	Carbonatos	mg/L	0,750	1,87	Zona fótica
14/09/2016	Bicarbonatos	mg/L	54,900	1,87	Zona fótica
14/09/2016	Fluoruros	mg/L	0,207	1,87	Zona fótica
14/09/2016	Cloruros	mg/L	6,336	1,87	Zona fótica
14/09/2016	Nitritos	mg/L	0,008	1,87	Zona fótica
14/09/2016	Bromuros	mg/L	0,008	1,87	Zona fótica
14/09/2016	Nitratos		0,011	· · · · · · · · · · · · · · · · · · ·	Zona fótica
14/09/2016	Ortofosfatos	mg/L	0,165	1,87 1,87	Zona fótica
		mg/L	·		Zona fótica
14/09/2016	Sulfatos	mg/L	1,046	1,87	Zona fótica
14/09/2016 14/09/2016	Nitritos	mg/L N	0,003	1,87	
	Nitratos	mg/L N	0,037	1,87	Zona fótica
14/09/2016	Amonio	mg/L	0,071	1,87	Zona fótica
14/09/2016	Amonio	mg/L N	0,055	1,87	Zona fótica
14/09/2016	Suma formas nitrogenadas	mg/L N	0,095	1,87	Zona fótica
14/09/2016	Nitrógeno total	mg/L N	1,159	1,87	Zona fótica
14/09/2016	Ortofosfatos	μg/L P	1,630	1,87	Zona fótica
14/09/2016	Fosforo disuelto	μg/L P	11,700	1,87	Zona fótica
14/09/2016	Fosforo total	μg/L P	45,240	1,87	Zona fótica
14/09/2016	Dureza calculada	mg/L CaCO3	31,623	1,87	Zona fótica
14/09/2016	Calcio	mg/L	9,400	6,5	Fondo
14/09/2016	Magnesio	mg/L	2,100	6,5	Fondo
14/09/2016	Sodio	mg/L	7,900	6,5	Fondo
14/09/2016	Potasio	mg/L	1,000	6,5	Fondo
14/09/2016	Carbonatos	mg/L	0,750	6,5	Fondo
14/09/2016	Bicarbonatos	mg/L	54,900	6,5	Fondo
14/09/2016	Fluoruros	mg/L	0,198	6,5	Fondo
14/09/2016	Cloruros	mg/L	6,305	6,5	Fondo
14/09/2016	Nitritos	mg/L	0,008	6,5	Fondo
14/09/2016	Bromuros	mg/L	0,010	6,5	Fondo
14/09/2016	Nitratos	mg/L	0,121	6,5	Fondo
14/09/2016	Ortofosfatos	mg/L	0,005	6,5	Fondo
14/09/2016	Sulfatos	mg/L	1,084	6,5	Fondo

MINISTERIO DE FOMENTO

14/09/2016 Nitritos mg/L 0.002 6,5 Fondo 14/09/2016 Amonio mg/L 0.084 6,5 Fondo 14/09/2016 Amonio mg/L 0.080 6,5 Fondo 14/09/2016 Sums formas nitrogenadas mg/L N 0.080 6,5 Fondo 14/09/2016 Sums formas nitrogenadas mg/L N 0.080 6,5 Fondo 14/09/2016 Sums formas nitrogenadas mg/L N 0.080 6,5 Fondo 14/09/2016 Fosforo disuelto µg/L P 11,010 6,5 Fondo 14/09/2016 Fosforo disuelto µg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada mg/L CaCO3 32,122 6,5 Fondo 11/10/2016 Calcio mg/L 8,700 2,25 Zona fotica 11/10/2016 Magnesio mg/L 2,000 2,25 Zona fotica 11/10/2016 Carbonatos<						
A4/09/2016 Amonio	14/09/2016	Nitritos	mg/L N	0,002	6,5	Fondo
44/09/2016 Amonio					·	
4/09/2016 Suma formas nitrogenadas mg/L N 0,080 6,5 Fondo 14/09/2016 Ortofosfatos μg/L P 1,630 6,5 Fondo 14/09/2016 Fosforo disuelto μg/L P 11,610 6,5 Fondo 14/09/2016 Fosforo disuelto μg/L P 11,010 6,5 Fondo 14/09/2016 Fosforo disuelto μg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada μg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada mg/L CaCO3 32,122 6,5 Fondo 11/10/2016 Calcio mg/L 8,700 2,25 Zona fótica 11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Sodio mg/L 1,100 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,000 2,25 Zona fótica 11/10/2016 Cloruros mg/L 0,001 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,044 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Fosforo disuelto μg/L P 1,830 2,25 Zona fótica 11/10/2016 Calcio mg/L 0,044 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,044 2,25 Zona fótica 11/10/2016 Nitratos						
4/09/2016 Nitrógeno total mg/L N 1,288 6,5 Fondo 4/09/2016 Fosforo disuelto μg/L P 1,630 6,5 Fondo 4/09/2016 Fosforo total μg/L P 15,460 6,5 Fondo 4/09/2016 Fosforo total μg/L P 53,460 6,5 Fondo 4/09/2016 Calcio mg/L 8,700 2,25 Zona fotica 1/10/2016 Magnesio mg/L 8,000 2,25 Zona fotica 1/10/2016 Magnesio mg/L 8,300 2,25 Zona fotica 1/10/2016 Potasio mg/L 8,300 2,25 Zona fotica 1/10/2016 Potasio mg/L 1,100 2,25 Zona fotica 1/10/2016 Carbonatos mg/L 1,100 2,25 Zona fotica 1/10/2016 Bicarbonatos mg/L 48,800 2,25 Zona fotica 1/10/2016 Fluoruros mg/L 0,201 2,25 Zona fotica 1/10/2016 Fluoruros mg/L 0,201 2,25 Zona fotica 1/10/2016 Fluoruros mg/L 0,201 2,25 Zona fotica 1/10/2016 Rivatorus mg/L 0,006 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,006 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,006 2,25 Zona fotica 1/10/2016 Sromuros mg/L 0,006 2,25 Zona fotica 1/10/2016 Ortofosfatos mg/L 0,006 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,006 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,005 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,002 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,004 2,25 Zona fotica 1/10/2016 Nitratos mg/L 0,005 2,25 Zona fotica 1/10/2016	14/09/2016					Fondo
14/09/2016 Ortofosfatos μg/L P 1,830 6,5 Fondo 14/09/2016 Fosforo Idalelto μg/L P 11,010 6,5 Fondo 14/09/2016 Fosforo Idalelto μg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada mg/L CaCO3 32,122 6,5 Fondo 14/09/2016 Magnesio mg/L 2,000 2,25 Zona fótica 11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Poltasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 1,100 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Cloruros mg/L 0,006 2,25 Zona fótica 11/10/2016 Siratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,002 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitrogen total mg/L 0,004 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitrógen total mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,009 6,5	14/09/2016	Suma formas nitrogenadas	mg/L N	0,080	6,5	Fondo
14/09/2016 Fosforo disuelto μg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada μg/L P 53,460 6,5 Fondo 14/09/2016 Calcio mg/L 8,700 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 2,25 Zona fótica 11/10/2016 Socio mg/L 8,300 2,25 Zona fótica 11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 1,100 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Filuoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Filuoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Filuoruros mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Rromuros mg/L 0,006 2,25 Zona fótica 11/10/2016 Rromuros mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,001 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,004 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitrogeno total mg/L 0,044 2,25 Zona fótica 11/10/2016 Fosforo total μg/L 1,331 2,25 Zona fótica 11/10/2016 Nitrogeno total μg/L 1,330 2,25 Zona fótica 11/10/2016 Soma formas nitrogenadas mg/L 0,005 2,25 Zona fótica 11/10/2016 Fosforo total μg/L 1,330 2,25 Zona fótica 11/10/2016 Romonio mg/L 0,004 2,25 Zona fótica 11/10/2016 Romonio mg/L 0,009 6,5 Fondo	14/09/2016	Nitrógeno total	mg/L N	1,258	6,5	Fondo
14/09/2016 Fosforo total μg/L P 53,460 6,5 Fondo 14/09/2016 Dureza calculada mg/L aCO3 32,122 6,5 Fondo 11/10/2016 Calcio mg/L 8,700 2,25 Zona fótica 11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,001 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,002 2,25 Zona fótica <td>14/09/2016</td> <td>Ortofosfatos</td> <td>μg/L P</td> <td>1,630</td> <td>6,5</td> <td>Fondo</td>	14/09/2016	Ortofosfatos	μg/L P	1,630	6,5	Fondo
14/09/2016 Dureza calculada mg/L CaCO3 32,122 6,5 Fondo 11/10/2016 Aalcio mg/L 8,700 2,25 Zona fótica 11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Blearbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Blearbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Blearbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Cloruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,005 2,25 Zona fótica <td>14/09/2016</td> <td>Fosforo disuelto</td> <td>μg/L P</td> <td>11,010</td> <td>6,5</td> <td>Fondo</td>	14/09/2016	Fosforo disuelto	μg/L P	11,010	6,5	Fondo
11/10/2016	14/09/2016	Fosforo total	μg/L P	53,460	6,5	Fondo
11/10/2016 Magnesio mg/L 2,000 2,25 Zona fótica 11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 1,100 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 0,201 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,006 2,25 Zona fótica 11/10/2016 Ritritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Ritratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Ritratos mg/L 0,002 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,002 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitrátos mg/L 0,004 2,25 Zona fótica	14/09/2016	Dureza calculada	mg/L CaCO3	32,122	6,5	Fondo
11/10/2016 Sodio mg/L 8,300 2,25 Zona fótica 11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Garbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Bromuros mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Sultatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica <td>11/10/2016</td> <td>Calcio</td> <td>mg/L</td> <td>8,700</td> <td>2,25</td> <td>Zona fótica</td>	11/10/2016	Calcio	mg/L	8,700	2,25	Zona fótica
11/10/2016 Potasio mg/L 1,100 2,25 Zona fótica 11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Bromuros mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,004 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,044 2,25 Zona fótica	11/10/2016	Magnesio	mg/L	2,000	2,25	Zona fótica
11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Bicarbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,065 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica	11/10/2016	Sodio	mg/L	8,300	2,25	Zona fótica
11/10/2016 Carbonatos mg/L 0,750 2,25 Zona fótica 11/10/2016 Ficarbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica	11/10/2016	Potasio	mg/L	1,100	2,25	Zona fótica
11/10/2016 Bicarbonatos mg/L 48,800 2,25 Zona fótica 11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica 11/10/2016 Cloruros mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,004 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,050 2,25 Zona fótica	11/10/2016	Carbonatos		0,750	2,25	Zona fótica
11/10/2016 Fluoruros mg/L 0,201 2,25 Zona fótica	11/10/2016	Bicarbonatos		48,800	2,25	Zona fótica
11/10/2016 Cloruros mg/L 6,652 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Bromuros mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,006 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,000 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,000 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,002 2,25 Zona fótica 11/10/2016 Nitritos mg/L 0,0014 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Cacio mg/L 8,700 6,5 Fondo 11/10/2016 Sodio mg/L 8,700 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,183 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,083 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L 0,		Fluoruros				
11/10/2016 Nitritos mg/L 0,006 2,25 Zona fótica 11/10/2016 Bromuros mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,005 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,004 2,25 Zona fótica 11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Magnesio mg/L 8,700 6,5 Fondo 11/10/2016 Potasio mg/L 8,700 6,5 Fondo 11/10/2016 Potasio mg/L 3,300 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Biramonatos mg/L 0,009 6,5 Fondo 11/10/2016 Biramonatos mg/L 0,009 6,5 Fondo 11/10/2016 Ritritos mg/L 0,009 6,5 Fondo 11/10/2016 Ritritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,003 6,5 Fo						
11/10/2016 Bromuros mg/L 0,014 2,25 Zona fótica 11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L P 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,435 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 2,000 6,5 Fondo 11/10/2016 Potasio mg/L 48,800 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,009 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,009 6,5 Fondo 11/10/2016 Ritritos mg/L 0,009 6,5 Fondo 11/10/2016 Ritritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,003 6,5 Fondo 11/10/2016 N				·	·	
11/10/2016 Nitratos mg/L 0,062 2,25 Zona fótica 11/10/2016 Ortofosfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,044 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,435 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 16,30 <td< td=""><td></td><td>Bromuros</td><td></td><td></td><td>·</td><td>Zona fótica</td></td<>		Bromuros			·	Zona fótica
11/10/2016 Ortofosfatos mg/L 0,005 2,25 Zona fótica 11/10/2016 Sulfatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,050 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963		Nitratos				
11/10/2016 Sulfatos mg/L 1,321 2,25 Zona fótica 11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 1,435 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3<		Ortofosfatos			· · · · · · · · · · · · · · · · · · ·	
11/10/2016 Nitritos mg/L N 0,002 2,25 Zona fótica 11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 3,6260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CACO3 29,963 2,25 Zona fótica 11/10/2016 Gucicio mg/L 8,700 6,5						
11/10/2016 Nitratos mg/L N 0,014 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L P 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 3,000 6,5 Fondo				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
11/10/2016 Amonio mg/L 0,044 2,25 Zona fótica 11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Magnesio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fond				·	·	
11/10/2016 Amonio mg/L N 0,034 2,25 Zona fótica 11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,750 6,5 Fondo					· · · · · · · · · · · · · · · · · · ·	
11/10/2016 Suma formas nitrogenadas mg/L N 0,050 2,25 Zona fótica 11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos μg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto μg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total μg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,183 6,5 Fondo						
11/10/2016 Nitrógeno total mg/L N 1,435 2,25 Zona fótica 11/10/2016 Ortofosfatos µg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto µg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo						
11/10/2016 Ortofosfatos μg/L P 1,630 2,25 Zona fótica 11/10/2016 Fosforo disuelto μg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total μg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Sodio mg/L 1,100 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016<						
11/10/2016 Fosforo disuelto μg/L P 11,170 2,25 Zona fótica 11/10/2016 Fosforo total μg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,009 6,5 Fondo 11/10/2016						
11/10/2016 Fosforo total µg/L P 36,260 2,25 Zona fótica 11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,083 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Sulfatos <td></td> <td></td> <td></td> <td>·</td> <td>·</td> <td></td>				·	·	
11/10/2016 Dureza calculada mg/L CaCO3 29,963 2,25 Zona fótica 11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Fluoruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,018 6,5 Fondo 11/10/2016 Ortofosfatos			<u> </u>			
11/10/2016 Calcio mg/L 8,700 6,5 Fondo 11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,183 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 0,009 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Nitritos mg/L			· -		·	
11/10/2016 Magnesio mg/L 2,000 6,5 Fondo 11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 0,183 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 0,083 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Nitritos mg/L 1,106 6,5 Fondo 11/10/2016 Nitratos mg/L						
11/10/2016 Sodio mg/L 8,300 6,5 Fondo 11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L 1,106 6,5 Fondo 11/10/2016 Nitratos mg/L <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
11/10/2016 Potasio mg/L 1,100 6,5 Fondo 11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N				·		
11/10/2016 Carbonatos mg/L 0,750 6,5 Fondo 11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,035 6,5 Fondo 11/10/2016 Suma formas nitrogenadas						
11/10/2016 Bicarbonatos mg/L 48,800 6,5 Fondo 11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Fluoruros mg/L 0,183 6,5 Fondo 11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Cloruros mg/L 6,630 6,5 Fondo 11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Nitritos mg/L 0,009 6,5 Fondo 11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Bromuros mg/L 0,009 6,5 Fondo 11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Nitratos mg/L 0,083 6,5 Fondo 11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Ortofosfatos mg/L 0,018 6,5 Fondo 11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Sulfatos mg/L 1,106 6,5 Fondo 11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L N 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo				•		
11/10/2016 Nitritos mg/L N 0,003 6,5 Fondo 11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Nitratos mg/L N 0,019 6,5 Fondo 11/10/2016 Amonio mg/L 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Amonio mg/L 0,035 6,5 Fondo 11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Amonio mg/L N 0,027 6,5 Fondo 11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Suma formas nitrogenadas mg/L N 0,049 6,5 Fondo						
11/10/2016 Nitrógeno total mg/L N 1,264 6,5 Fondo						
	11/10/2016	Nitrógeno total	mg/L N	1,264	6,5	Fondo

MINISTERIO DE FOMENTO

CEDEX

11/10/2016	Ortofosfatos	μg/L P	5,883	6,5	Fondo
11/10/2016	Fosforo disuelto	μg/L P	9,110	6,5	Fondo
11/10/2016	Fosforo total	μg/L P	41,120	6,5	Fondo
11/10/2016	Dureza calculada	mg/L CaCO3	29,963	6,5	Fondo
10/11/2016	Calcio	mg/L	9,800	2,5	Zona fótica
10/11/2016	Magnesio	mg/L	2,200	2,5	Zona fótica
10/11/2016	Sodio	mg/L	8,200	2,5	Zona fótica
10/11/2016	Potasio	mg/L	1,100	2,5	Zona fótica
10/11/2016	Carbonatos	mg/L	0,750	2,5	Zona fótica
10/11/2016	Bicarbonatos	mg/L	42,700	2,5	Zona fótica
10/11/2016	Fluoruros	mg/L	0,282	2,5	Zona fótica
10/11/2016	Cloruros	mg/L	7,437	2,5	Zona fótica
10/11/2016	Nitritos	mg/L	0,015	2,5	Zona fótica
10/11/2016	Bromuros	mg/L	0,020	2,5	Zona fótica
10/11/2016	Nitratos	mg/L	2,389	2,5	Zona fótica
10/11/2016	Ortofosfatos	mg/L	0,014	2,5	Zona fótica
10/11/2016	Sulfatos	mg/L	1,261	2,5	Zona fótica
10/11/2016	Nitritos	mg/L N	0,004	2,5	Zona fótica
10/11/2016	Nitratos	mg/L N	0,540	2,5	Zona fótica
10/11/2016	Amonio	mg/L	0,179	2,5	Zona fótica
10/11/2016	Amonio	mg/L N	0,139	2,5	Zona fótica
10/11/2016	Suma formas nitrogenadas	mg/L N	0,683	2,5	Zona fótica
10/11/2016	Nitrógeno total	mg/L N	0,318	2,5	Zona fótica
10/11/2016	Ortofosfatos	μg/L P	4,523	2,5	Zona fótica
10/11/2016	Fosforo disuelto	μg/L P	10,320	2,5	Zona fótica
10/11/2016	Fosforo total	μg/L P	37,030	2,5	Zona fótica
10/11/2016	Dureza calculada	mg/L CaCO3	33,533	2,5	Zona fótica
10/11/2016	Calcio	mg/L	9,400	6	Fondo
10/11/2016	Magnesio	mg/L	2,100	6	Fondo
10/11/2016	Sodio	mg/L	8,000	6	Fondo
10/11/2016	Potasio	mg/L	1,000	6	Fondo
10/11/2016	Carbonatos	mg/L	0,750	6	Fondo
10/11/2016	Bicarbonatos	mg/L	42,700	6	Fondo
10/11/2016	Fluoruros	mg/L	0,265	6	Fondo
10/11/2016	Cloruros	mg/L	6,758	6	Fondo
10/11/2016	Nitritos	mg/L	0,017	6	Fondo
10/11/2016	Bromuros	mg/L	0,018	6	Fondo
10/11/2016	Nitratos	mg/L	0,170	6	Fondo
10/11/2016	Ortofosfatos	mg/L	0,012	6	Fondo
10/11/2016	Sulfatos	mg/L	1,238	6	Fondo
10/11/2016	Nitritos	mg/L N	0,005	6	Fondo
10/11/2016	Nitratos	mg/L N	0,038	6	Fondo
10/11/2016	Amonio	mg/L	0,192	6	Fondo
10/11/2016	Amonio	mg/L N	0,149	6	Fondo
10/11/2016	Suma formas nitrogenadas	mg/L N	0,192	6	Fondo
10/11/2016	Nitrógeno total	mg/L N	1,462	6	Fondo
10/11/2016	Ortofosfatos	μg/L P	4,067	6	Fondo
10/11/2016	Fosforo disuelto	μg/L P	9,450	6	Fondo
10/11/2016	Fosforo total	μg/L P	47,550	6	Fondo
10/11/2016	Dureza calculada	mg/L CaCO3	32,122	6	Fondo
. 0, 1 1/2010	_ 2.022 03/04/444		U=, 122		. 01100

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

ANEXO 4. DATOS DE ANÁLISIS QUÍMICOS DEL SEDIMENTO EN 2016

DE FOMENTO

Fecha muestreo: 10/11/2016 Nombre masa de agua: Embalse de

Serones

Punto de muestreo: Presa

Longitud Testigo sedimento: 19 cm

Laboratorio: CEH (CEDEX) Fecha de análisis: 21/11/2016

Código muestra	Nivel (cm)	Densidad Sed.húm. (g/cm³)	Sed. Seco (%Peso seco)	Cont. agua (% peso)	Pérdida por ignición (LOI) (% M.O.)	N _{total} (mg/k g peso seco)	P _{total} (mg/kg peso seco)
SER-16/01-0.0-1.0	0,0-1,0	0,982	19,114	80,9	11,034	6100	854
SER-16/01-1.0-2.0	1,0-2,0	1,018	23,153	76,8	11,795	5900	838
SER-16/01-2.0-3.0	2,0-3,0	0,993	20,081	79,9	13,039	6500	901
SER-16/01-3.0-4.0	3,0-4,0	1,007	18,923	81,1	12,126	5800	827
SER-16/01-4.0-5.0	4,0-5,0	1,007	28,151	71,8	9,139	4000	907
SER-16/01-5.0-6.0	5,0-6,0	1,183	44,659	55,3	4,333	2300	543
SER-16/01-6.0-7.0	6,0-7,0	1,105	38,101	61,9	6,557	2700	553
SER-16/01-7.0-8.0	7,0-8,0	1,180	35,949	64,1	8,274	3900	724
SER-16/01-8.0-9.0	8,0-9,0	1,103	35,235	64,8	9,138	4100	821
SER-16/01-9.0-10.0	9,0-10,0	1,177	34,537	65,5	9,643	4200	836
SER-16/01-10.0-11.0	10,0-11,0	1,078	36,212	63,8	9,810	4300	789
SER-16/01-11.0-12.0	11,0-12,0	1,279	39,274	60,7	8,224	3600	734
SER-16/01-12.0-13.0	12,0-13,0	1,154	43,332	56,7	6,879	3100	602
SER-16/01-13.0-14.0	13,0-14,0	1,263	44,128	55,9	7,233	3300	657
SER-16/01-14.0-15.0	14,0-15,0	1,176	38,564	61,4	9,881	3300	772
SER-16/01-15.0-16.0	15,0-16,0	1,194	47,153	52,8	6,979	2000	447
SER-16/01-16.0-17.0	16,0-17,0	1,515	67,463	32,5	3,014	1300	376
SER-16/01-17.0-18.0	17,0-18,0	1,681	65,188	34,8	3,285	1300	311
SER-16/01-18.0-19.0	18,0-19,0	1,899	69,716	30,3	2,757	1400	318

Código muestra	Nivel (cm)	As (mg/kg	Cd (mg/kg	Cr (mg/kg	Cu (mg/kg	Pb (mg/k	Zn (mg/kg	Fe (mg/kg	Mn (mg/kg	Be (mg/kg	Co (mg/kg	V (mg/kg	Se (mg/kg	Ba (mg/kg	Ni (mg/kg	Al (mg/kg
	, ,	peso seco)	peso seco)	peso seco)	peso seco)	g peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)	peso seco)
SER-16/01-0.0-1.0	0,0-1,0	<ld< td=""><td><ld< td=""><td>24</td><td>15</td><td>24</td><td>110</td><td>36320</td><td>928</td><td>2</td><td>11</td><td>35</td><td><ld< td=""><td>165</td><td>12</td><td>50550</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>24</td><td>15</td><td>24</td><td>110</td><td>36320</td><td>928</td><td>2</td><td>11</td><td>35</td><td><ld< td=""><td>165</td><td>12</td><td>50550</td></ld<></td></ld<>	24	15	24	110	36320	928	2	11	35	<ld< td=""><td>165</td><td>12</td><td>50550</td></ld<>	165	12	50550
SER-16/01-1.0-2.0	1,0-2,0	<ld< td=""><td>1</td><td>27</td><td>16</td><td>26</td><td>115</td><td>46345</td><td>980</td><td>2</td><td>11</td><td>39</td><td><ld< td=""><td>183</td><td>14</td><td>67700</td></ld<></td></ld<>	1	27	16	26	115	46345	980	2	11	39	<ld< td=""><td>183</td><td>14</td><td>67700</td></ld<>	183	14	67700
SER-16/01-2.0-3.0	2,0-3,0	<ld< td=""><td>1</td><td>29</td><td>15</td><td>29</td><td>112</td><td>47075</td><td>966</td><td>2</td><td>13</td><td>44</td><td><ld< td=""><td>194</td><td>13</td><td>69450</td></ld<></td></ld<>	1	29	15	29	112	47075	966	2	13	44	<ld< td=""><td>194</td><td>13</td><td>69450</td></ld<>	194	13	69450
SER-16/01-3.0-4.0	3,0-4,0	<ld< td=""><td>1</td><td>27</td><td>16</td><td>27</td><td>110</td><td>56260</td><td>925</td><td>2</td><td>12</td><td>39</td><td><ld< td=""><td>172</td><td>13</td><td>80250</td></ld<></td></ld<>	1	27	16	27	110	56260	925	2	12	39	<ld< td=""><td>172</td><td>13</td><td>80250</td></ld<>	172	13	80250
SER-16/01-4.0-5.0	4,0-5,0	<ld< td=""><td>1</td><td>25</td><td>14</td><td>23</td><td>87</td><td>35570</td><td>791</td><td>2</td><td>11</td><td>36</td><td><ld< td=""><td>154</td><td>11</td><td>57200</td></ld<></td></ld<>	1	25	14	23	87	35570	791	2	11	36	<ld< td=""><td>154</td><td>11</td><td>57200</td></ld<>	154	11	57200
SER-16/01-5.0-6.0	5,0-6,0	<ld< td=""><td><ld< td=""><td>16</td><td>10</td><td>17</td><td>65</td><td>23650</td><td>523</td><td>1</td><td>8</td><td>22</td><td><ld< td=""><td>94</td><td>8</td><td>30510</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>16</td><td>10</td><td>17</td><td>65</td><td>23650</td><td>523</td><td>1</td><td>8</td><td>22</td><td><ld< td=""><td>94</td><td>8</td><td>30510</td></ld<></td></ld<>	16	10	17	65	23650	523	1	8	22	<ld< td=""><td>94</td><td>8</td><td>30510</td></ld<>	94	8	30510
SER-16/01-6.0-7.0	6,0-7,0	<ld< td=""><td><ld< td=""><td>17</td><td>12</td><td>17</td><td>75</td><td>21100</td><td>532</td><td>1</td><td>8</td><td>24</td><td><ld< td=""><td>105</td><td>9</td><td>31465</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>17</td><td>12</td><td>17</td><td>75</td><td>21100</td><td>532</td><td>1</td><td>8</td><td>24</td><td><ld< td=""><td>105</td><td>9</td><td>31465</td></ld<></td></ld<>	17	12	17	75	21100	532	1	8	24	<ld< td=""><td>105</td><td>9</td><td>31465</td></ld<>	105	9	31465
SER-16/01-7.0-8.0	7,0-8,0	<ld< td=""><td>1</td><td>22</td><td>15</td><td>23</td><td>94</td><td>30375</td><td>751</td><td>2</td><td>10</td><td>33</td><td><ld< td=""><td>142</td><td>13</td><td>41385</td></ld<></td></ld<>	1	22	15	23	94	30375	751	2	10	33	<ld< td=""><td>142</td><td>13</td><td>41385</td></ld<>	142	13	41385
SER-16/01-8.0-9.0	8,0-9,0	<ld< td=""><td><ld< td=""><td>25</td><td>17</td><td>32</td><td>100</td><td>74615</td><td>804</td><td>2</td><td>12</td><td>37</td><td><ld< td=""><td>172</td><td>13</td><td>109950</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>25</td><td>17</td><td>32</td><td>100</td><td>74615</td><td>804</td><td>2</td><td>12</td><td>37</td><td><ld< td=""><td>172</td><td>13</td><td>109950</td></ld<></td></ld<>	25	17	32	100	74615	804	2	12	37	<ld< td=""><td>172</td><td>13</td><td>109950</td></ld<>	172	13	109950
SER-16/01-9.0-10.0	9,0-10,0	<ld< td=""><td><ld< td=""><td>24</td><td>16</td><td>36</td><td>94</td><td>36555</td><td>767</td><td>2</td><td>11</td><td>36</td><td><ld< td=""><td>155</td><td>12</td><td>49935</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>24</td><td>16</td><td>36</td><td>94</td><td>36555</td><td>767</td><td>2</td><td>11</td><td>36</td><td><ld< td=""><td>155</td><td>12</td><td>49935</td></ld<></td></ld<>	24	16	36	94	36555	767	2	11	36	<ld< td=""><td>155</td><td>12</td><td>49935</td></ld<>	155	12	49935
SER-16/01-10.0-11.0	10,0-11,0	<ld< td=""><td><ld< td=""><td>25</td><td>15</td><td>28</td><td>100</td><td>35090</td><td>798</td><td>2</td><td>11</td><td>37</td><td><ld< td=""><td>169</td><td>12</td><td>54700</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>25</td><td>15</td><td>28</td><td>100</td><td>35090</td><td>798</td><td>2</td><td>11</td><td>37</td><td><ld< td=""><td>169</td><td>12</td><td>54700</td></ld<></td></ld<>	25	15	28	100	35090	798	2	11	37	<ld< td=""><td>169</td><td>12</td><td>54700</td></ld<>	169	12	54700
SER-16/01-11.0-12.0	11,0-12,0	<ld< td=""><td><ld< td=""><td>22</td><td>14</td><td>27</td><td>93</td><td>37310</td><td>723</td><td>2</td><td>11</td><td>35</td><td><ld< td=""><td>147</td><td>11</td><td>54250</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>22</td><td>14</td><td>27</td><td>93</td><td>37310</td><td>723</td><td>2</td><td>11</td><td>35</td><td><ld< td=""><td>147</td><td>11</td><td>54250</td></ld<></td></ld<>	22	14	27	93	37310	723	2	11	35	<ld< td=""><td>147</td><td>11</td><td>54250</td></ld<>	147	11	54250
SER-16/01-12.0-13.0	12,0-13,0	<ld< td=""><td><ld< td=""><td>20</td><td>16</td><td>28</td><td>84</td><td>57490</td><td>604</td><td>1</td><td>9</td><td>29</td><td><ld< td=""><td>127</td><td>10</td><td>78200</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>20</td><td>16</td><td>28</td><td>84</td><td>57490</td><td>604</td><td>1</td><td>9</td><td>29</td><td><ld< td=""><td>127</td><td>10</td><td>78200</td></ld<></td></ld<>	20	16	28	84	57490	604	1	9	29	<ld< td=""><td>127</td><td>10</td><td>78200</td></ld<>	127	10	78200
SER-16/01-13.0-14.0	13,0-14,0	<ld< td=""><td><ld< td=""><td>20</td><td>17</td><td>35</td><td>87</td><td>28305</td><td>618</td><td>1</td><td>9</td><td>31</td><td><ld< td=""><td>132</td><td>10</td><td>42750</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>20</td><td>17</td><td>35</td><td>87</td><td>28305</td><td>618</td><td>1</td><td>9</td><td>31</td><td><ld< td=""><td>132</td><td>10</td><td>42750</td></ld<></td></ld<>	20	17	35	87	28305	618	1	9	31	<ld< td=""><td>132</td><td>10</td><td>42750</td></ld<>	132	10	42750
SER-16/01-14.0-15.0	14,0-15,0	<ld< td=""><td><ld< td=""><td>23</td><td>16</td><td>45</td><td>99</td><td>30995</td><td>739</td><td>1</td><td>11</td><td>35</td><td><ld< td=""><td>155</td><td>11</td><td>47970</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>23</td><td>16</td><td>45</td><td>99</td><td>30995</td><td>739</td><td>1</td><td>11</td><td>35</td><td><ld< td=""><td>155</td><td>11</td><td>47970</td></ld<></td></ld<>	23	16	45	99	30995	739	1	11	35	<ld< td=""><td>155</td><td>11</td><td>47970</td></ld<>	155	11	47970
SER-16/01-15.0-16.0	15,0-16,0	<ld< td=""><td><ld< td=""><td>17</td><td>12</td><td>28</td><td>64</td><td>19100</td><td>440</td><td>1</td><td>8</td><td>27</td><td><ld< td=""><td>98</td><td>8</td><td>29730</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>17</td><td>12</td><td>28</td><td>64</td><td>19100</td><td>440</td><td>1</td><td>8</td><td>27</td><td><ld< td=""><td>98</td><td>8</td><td>29730</td></ld<></td></ld<>	17	12	28	64	19100	440	1	8	27	<ld< td=""><td>98</td><td>8</td><td>29730</td></ld<>	98	8	29730
SER-16/01-16.0-17.0	16,0-17,0	<ld< td=""><td><ld< td=""><td>12</td><td>11</td><td>16</td><td>57</td><td>17495</td><td>332</td><td><ld< td=""><td>6</td><td>17</td><td><ld< td=""><td>69</td><td>7</td><td>24645</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>12</td><td>11</td><td>16</td><td>57</td><td>17495</td><td>332</td><td><ld< td=""><td>6</td><td>17</td><td><ld< td=""><td>69</td><td>7</td><td>24645</td></ld<></td></ld<></td></ld<>	12	11	16	57	17495	332	<ld< td=""><td>6</td><td>17</td><td><ld< td=""><td>69</td><td>7</td><td>24645</td></ld<></td></ld<>	6	17	<ld< td=""><td>69</td><td>7</td><td>24645</td></ld<>	69	7	24645
SER-16/01-17.0-18.0	17,0-18,0	<ld< td=""><td><ld< td=""><td>10</td><td>10</td><td>13</td><td>46</td><td>18280</td><td>304</td><td>1</td><td>5</td><td>15</td><td><ld< td=""><td>59</td><td>6</td><td>24475</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>10</td><td>10</td><td>13</td><td>46</td><td>18280</td><td>304</td><td>1</td><td>5</td><td>15</td><td><ld< td=""><td>59</td><td>6</td><td>24475</td></ld<></td></ld<>	10	10	13	46	18280	304	1	5	15	<ld< td=""><td>59</td><td>6</td><td>24475</td></ld<>	59	6	24475
SER-16/01-18.0-19.0	18,0-19,0	<ld< td=""><td><ld< td=""><td>10</td><td>10</td><td>15</td><td>50</td><td>13330</td><td>321</td><td>1</td><td>5</td><td>16</td><td><ld< td=""><td>62</td><td>6</td><td>19450</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>10</td><td>10</td><td>15</td><td>50</td><td>13330</td><td>321</td><td>1</td><td>5</td><td>16</td><td><ld< td=""><td>62</td><td>6</td><td>19450</td></ld<></td></ld<>	10	10	15	50	13330	321	1	5	16	<ld< td=""><td>62</td><td>6</td><td>19450</td></ld<>	62	6	19450

MINISTERIO DE FOMENTO

ANEXO 5. DATOS BIOLÓGICOS DE FITOPLANCTON DE 2016

DE FOMENTO

Embalse de Serones

Punto de muestreo: Presa.

Determinaciones taxonómicas: Adel el Anjoumi el Amrani (Cimera Estudios Aplicados, S.L.).

COD_MUESTRA	Fecha de muestreo	COD_EST_MUESTRA	PHYLLUM	TAXON	CODIGO TAXAGUA	Toxicidad Potencial	Abund. (nº cél/ml)	Abund.	Biovol. mm³/l
(8m)_20160623_CT	23/06/2016	Fondo (8m)	Cryptophyta	Cryptomonas erosa	3484	0	503,66	17,500	2,269
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Aulacoseira ambigua	3966	0	303,22	10,536	0,388
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Euglenophyta	Phacus tortus	5896	0	5,14	0,179	0,245
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Pseudopediastrum boryanum	21249	0	215,85	7,500	0,067
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Pediastrum duplex	55	0	82,23	2,857	0,032
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Planktosphaeria gelatinosa	30214	0	30,84	1,071	0,031
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Coelastrum astroideum	1957	0	123,35	4,286	0,029
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Euglenophyta	Trachelomonas	1445	0	5,14	0,179	0,024
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cryptophyta	Cryptomonas marssonii	3488	0	41,12	1,429	0,022
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Asterionella formosa	713	0	25,7	0,893	0,019
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Euglenophyta	Trachelomonas volvocina	5904	0	15,42	0,536	0,014
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Coenococcus fottii	23084	0	123,35	4,286	0,013
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Cyclotella	1953	0	15,42	0,536	0,012
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Aulacoseira distans	17600	0	92,51	3,214	0,012
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cryptophyta	Chroomonas	627	0	77,09	2,679	0,011
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Oocystis lacustris	1987	0	66,81	2,321	0,010
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Chlamydomonas	71	0	5,14	0,179	0,009
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	102,79	3,571	0,009
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Scenedesmus denticulatus	1102	0	41,12	1,429	0,008
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Aulacoseira granulata	5912	0	20,56	0,714	0,006
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Dinophyta	Gymnodinium mitratum	8719	0	5,14	0,179	0,006
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Desmodesmus aculeolatus	37812	0	41,12	1,429	0,006
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Streptophyta	Cosmarium depressum	2050	0	5,14	0,179	0,005
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Scenedesmus	44	0	41,12	1,429	0,005
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Desmodesmus communis	19653	0	41,12	1,429	0,004
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Actinastrum hantzschii	47	0	30,84	1,071	0,004
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Acutodesmus acuminatus	8521	0	20,56	0,714	0,004
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Aulacoseira subarctica	18012	0	10,28	0,357	0,003
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cyanobacteria	Chroococcus	884	0	10,28	0,357	0,003
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Desmodesmus armatus	7948	0	51,39	1,786	0,003
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Heterokontophyta	Pseudopedinella	1352	0	5,14	0,179	0,002
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Nephrochlamys subsolitaria	29544	0	20,56	0,714	0,002
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Desmodesmus subspicatus	22649	0	61,67	2,143	0,002
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Tetraedron caudatum	1127	0	5,14	0,179	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Ankyra judayi	27834	0	20,56	0,714	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	20,56	0,714	0,001

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CEDEX

				1			1		
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Choanozoa	Codosiga furcata	41787	0	20,56	0,714	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Bacillariophyta	Fragilaria	468	0	5,14	0,179	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cyanobacteria	Anabaena mendotae	26137	1	20,56	0,714	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	61,67	2,143	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Heterokontophyta	Chromulina	1250	0	30,84	1,071	0,001
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Ankistrodesmus fusiformis	1929	0	10,28	0,357	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Choanozoa	Monosiga varians	2117	0	5,14	0,179	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Crucigenia tetrapedia	2980	0	5,14	0,179	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Monoraphidium contortum	2960	0	10,28	0,357	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Komarekia appendiculata	2170	0	5,14	0,179	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	411,15	14,286	0,000
FP_Fondo (8m)_20160623_CT	23/06/2016	Fondo (8m)	Chlorophyta	Monoraphidium tortile	29511	0	5,14	0,179	0,000
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Achnanthidium minutissimum	5950	0	5,56	0,102	0,000
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Heterokontophyta	Bicosoeca planctonica	815	0	5,56	0,102	0,000
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Monomastix minuta	37701	0	22,23	0,408	0,000
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	2001,14	36,735	0,001
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cyanobacteria	Woronichinia naegeliana	25687	1	33,35	0,612	0,001
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Scenedesmus bicaudatus	2011	0	22,23	0,408	0,001
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cryptophyta	Chroomonas	627	0	11,12	0,204	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Desmodesmus subspicatus	22649	0	66,7	1,225	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cryptophyta	Cryptomonas	513	0	5,56	0,102	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Tetraedron caudatum	1127	0	11,12	0,204	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Golenkinia radiata	1965	0	5,56	0,102	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Nephrochlamys subsolitaria	29544	0	22,23	0,408	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Desmodesmus communis	19653	0	22,23	0,408	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Acutodesmus obliquus	8630	0	22,23	0,408	0,002
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Heterokontophyta	Mallomonas akrokomos	1339	0	5,56	0,102	0,003
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Heterokontophyta	Chromulina	1250	0	161,2	2,959	0,003
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Komarekia appendiculata	2170	0	88,94	1,633	0,003
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Desmodesmus aculeolatus	37812	0	22,23	0,408	0,003
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	377,99	6,939	0,004
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Cyclotella	1953	0	5,56	0,102	0,004
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Fragilaria	468	0	33,35	0,612	0,004
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Ankyra judayi	27834	0	105,62	1,939	0,005
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Euglenophyta	Trachelomonas volvocina	5904	0	5,56	0,102	0,005
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Heterokontophyta	Pseudopedinella	1352	0	11,12	0,204	0,005
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Paulschulzia pseudovolvox	17296	0	22,23	0,408	0,006
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Aulacoseira subarctica	18012	0	22,23	0,408	0,006
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Scenedesmus	44	0	77,82	1,429	0,010
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Coenococcus fottii	23084	0	100,06	1,837	0,011
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Pseudopediastrum boryanum	21249	0	44,47	0,816	0,014
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Aulacoseira distans	17600	0	133,41	2,449	0,017
	20/30/2010	1 0000 (0 0,2011)	_aomanopriyta	, a.aoooona diotano	17000		100,41	۷,⊤۳۵	0,011

MINISTERIO DE FOMENTO

FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Oocystis lacustris	1987	0	155,64	2,857	0,024
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Asterionella formosa	713	0	33,35	0,612	0,025
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Coelastrum astroideum	1957	0	144,53	2,653	0,034
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Pediastrum duplex	55	0	88,94	1,633	0,035
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cryptophyta	Cryptomonas marssonii	3488	0	88,94	1,633	0,049
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	755,99	13,878	0,063
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Chlorophyta	Planktosphaeria gelatinosa	30214	0	138,97	2,551	0,138
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Bacillariophyta	Aulacoseira ambigua	3966	0	150,09	2,755	0,192
FP_Zeu (0-3,25m)_20160623_CT	23/06/2016	Fótica (0-3,25m)	Cryptophyta	Cryptomonas erosa	3484	0	416,9	7,653	1,878
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Dolichospermum	39031	0	3463,95	2,892	0,501
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Bacillariophyta	Aulacoseira ambigua	3966	0	267,25	0,223	0,342
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Dolichospermum planctonicum	41153	0	1439,03	1,201	0,334
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cryptophyta	Cryptomonas erosa	3484	0	61,67	0,052	0,278
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Merismopedia trolleri	24955	0	26879,01	22,441	0,195
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Anabaena circinalis	23804	1	349,48	0,292	0,124
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cryptophyta	Cryptomonas marssonii	3488	0	113,07	0,094	0,062
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cryptophyta	Cryptomonas	513	0	164,46	0,137	0,051
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Euglenophyta	Trachelomonas	1445	0	10,28	0,009	0,048
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Euglenophyta	Trachelomonas volvocina	5904	0	30,84	0,026	0,028
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	83772,04	69,939	0,027
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Pseudopediastrum boryanum	21249	0	82,23	0,069	0,026
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Bacillariophyta	Puncticulata radiosa	29102	0	102,79	0,086	0,025
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Streptophyta	Cosmarium laeve	2047	0	10,28	0,009	0,025
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Streptophyta	Staurastrum	91	0	10,28	0,009	0,024
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Coelastrum astroideum	1957	0	92,51	0,077	0,022
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	246,69	0,206	0,021
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cryptophyta	Chroomonas	627	0	133,62	0,112	0,020
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Crucigenia tetrapedia	2980	0	195,3	0,163	0,017
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Heterokontophyta	Mallomonas	96	0	20,56	0,017	0,016
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Pediastrum tetras	1993	0	82,23	0,069	0,013
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Bacillariophyta	Nitzschia	16	0	51,39	0,043	0,011
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Sphaerocystis planctonica	1118	0	92,51	0,077	0,010
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Pseudodidymocystis fina	41123	0	493,38	0,412	0,008
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Scenedesmus arcuatus	2970	0	123,35	0,103	0,008
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Cyanobacteria	Pseudanabaena	648	0	513,94	0,429	0,007
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Bacillariophyta	Aulacoseira distans	17600	0	41,12	0,034	0,005
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Treubaria triappendiculata	2155	0	41,12	0,034	0,005
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Desmodesmus communis	19653	0	41,12	0,034	0,004
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Tetraedron caudatum	1127	0	20,56	0,017	0,004
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Choanozoa	Monosiga varians	2117	0	71,95	0,060	0,003
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Tetraedron minimum	1130	0	20,56	0,017	0,003
FP_Fondo (7m)_20160825_CT	25/08/2016	Fondo (7m)	Chlorophyta	Desmodesmus armatus	7948	0	41,12	0,034	0,002

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CEDEX

PP_Fondo (7m)
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Streptophyta Elakatothrix gelatinosa 2144 0 20,56 0,017 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Diplochloris decussata 28441 0 246,69 0.206 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Desmodesmus subspicatus 22649 0 61,67 0.052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monoraphidium contortum 2960 0 61,67 0.052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Helerokontophyta Ochromonas 1304 0 82,23 0.069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Haptophyta Chrysochromulina parva 2256 0 51,39 0.043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0.034 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fondo (7m) Chlorop
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Diplochloris decussata 28441 0 246,69 0,206 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Desmodesmus subspicatus 22649 0 61,67 0,052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monoraphidium contortum 2960 0 61,67 0,052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Heterokontophyta Ochromonas 1304 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Haptophyta Chrysochromulina parva 2256 0 51,39 0,043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Desmodesmus subspicatus 22649 0 61,67 0,052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monoraphidium contortum 2960 0 61,67 0,052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Heterokontophyta Ochromonas 1304 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Chrysochromulina parva 2256 0 51,39 0,043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Fondo (7m)_20160825_CT 25/08/2016 Fonta (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monoraphidium contortum 2960 0 61,67 0,052 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Heterokontophyta Ochromonas 1304 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Haptophyta Chrysochromulina parva 2256 0 51,39 0,043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Pyramimonas inconstans 31996 0 10,28 0,009 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Heterokontophyta Ochromonas 1304 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Haptophyta Chrysochromulina parva 2256 0 51,39 0,043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryp
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Haptophyta Chrysochromulina parva 2256 0 51,39 0,043 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Pyramimonas inconstans 31996 0 10,28 0,009 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 82,23 0,069 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Monomastix minuta 37701 0 41,12 0,034 FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Pyramimonas inconstans 31996 0 10,28 0,009 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Fondo (7m)_20160825_CT
FP_Fondo (7m)_20160825_CT 25/08/2016 Fondo (7m) Chlorophyta Pyramimonas inconstans 31996 0 10,28 0,009 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1117 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m)
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Bacillariophyta Nitzschia 16 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Streptophyta Staurastrum 91 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fót
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Cryptomonas 513 0 133,62 0,055 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 <t< td=""></t<>
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cryptophyta Chroomonas 627 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,007 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Cyanobacteria Chroococcus 884 0 20,56 0,008 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Sphaerocystis planctonica 1118 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron caudatum 1127 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Chlorophyta Tetraedron minimum 1130 0 10,28 0,004 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Heterokontophyta Chromulina 1250 0 41,12 0,017 FP_Zeu (0-1,65 m)_20160825_CT 25/08/2016 Fótica (0-1,65 m) Euglenophyta Euglena 1423 0 10,28 0,004
FP_Zeu (0-1,65 m)_20160825_CT
FP_Zeu (0-1,65 m)_20160825_CT
FP_Zeu (0-1,65 m)_20160825_CT

MINISTERIO DE FOMENTO

FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cyanobacteria	Anabaena circinalis	23804	1	246,69	0,101	0,087
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cyanobacteria	Merismopedia trolleri	24955	0	2919,17	1,191	0,021
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	256,97	0,105	0,021
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Ankyra judayi	27834	0	41,12	0,017	0,002
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	452,27	0,185	0,004
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Diplochloris decussata	28441	0	205,58	0,084	0,001
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Bacillariophyta	Puncticulata radiosa	29102	0	133,62	0,055	0,033
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Planktosphaeria gelatinosa	30214	0	10,28	0,004	0,010
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Bacillariophyta	Staurosira venter	30576	0	20,56	0,008	0,002
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	234253,36	95,596	0,075
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Monomastix minuta	37701	0	92,51	0,038	0,002
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cyanobacteria	Dolichospermum	39031	0	2271,61	0,927	0,329
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Chlorophyta	Pseudodidymocystis fina	41123	0	801,74	0,327	0,013
FP_Zeu (0-1,65 m)_20160825_CT	25/08/2016	Fótica (0-1,65 m)	Cyanobacteria	Dolichospermum planctonicum	41153	0	770,91	0,315	0,179
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Aulacoseira ambigua	3966	0	811,57	0,525	1,038
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Cyclostephanos dubius	5913	0	400,23	0,259	0,857
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cryptophyta	Cryptomonas erosa	3484	0	22,23	0,014	0,100
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cyanobacteria	Anabaena circinalis	23804	1	277,94	0,180	0,098
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Pediastrum duplex	55	0	177,88	0,115	0,069
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cryptophyta	Cryptomonas	513	0	189	0,122	0,059
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Streptophyta	Cosmarium laeve	2047	0	22,23	0,014	0,054
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cyanobacteria	Merismopedia trolleri	24955	0	6714,94	4,347	0,049
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cyanobacteria	Cyanodictyon imperfectum	32677	0	141080,53	91,328	0,045
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Chlamydomonas	71	0	22,23	0,014	0,040
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Crucigenia tetrapedia	2980	0	422,46	0,274	0,037
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Aulacoseira granulata	5912	0	111,17	0,072	0,035
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cryptophyta	Plagioselmis nannoplanctica	27403	0	333,52	0,216	0,028
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Oocystis lacustris	1987	0	177,88	0,115	0,027
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Streptophyta	Staurastrum	91	0	11,12	0,007	0,026
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Euglenophyta	Euglena	1423	0	11,12	0,007	0,026
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Nitzschia	16	0	111,17	0,072	0,023
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Euglenophyta	Trachelomonas volvocinopsis	3328	0	11,12	0,007	0,022
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cryptophyta	Cryptomonas marssonii	3488	0	33,35	0,022	0,018
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Pseudodidymocystis fina	41123	0	1111,75	0,720	0,018
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Asterionella formosa	713	0	22,23	0,014	0,016
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Coelastrum astroideum	1957	0	66,7	0,043	0,016
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Euglenophyta	Trachelomonas volvocina	5904	0	11,12	0,007	0,010
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Tetraedron triangulare	32415	0	33,35	0,022	0,009
FP_Fondo (6,7m)_20160914_CT		Fondo	Heterokontophyta	Mallomonas	96	0	11,12	0,007	0,008
	14/09/2016	1 Office							
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Aulacoseira distans	17600	0	66,7	0,043	0,008
FP_Fondo (6,7m)_20160914_CT FP_Fondo (6,7m)_20160914_CT				Aulacoseira distans Scenedesmus denticulatus	17600 1102	0	66,7 44,47	0,043	0,008

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CEDEX

			ı	ı					
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Haptophyta	Chrysochromulina parva	2256	0	322,41	0,209	0,007
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Cryptophyta	Chroomonas	627	0	44,47	0,029	0,007
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Diplochloris decussata	28441	0	1022,81	0,662	0,006
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Desmodesmus armatus	7948	0	88,94	0,058	0,004
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Golenkinia radiata	1965	0	11,12	0,007	0,004
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Tetraedron caudatum	1127	0	22,23	0,014	0,004
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Scenedesmus bicaudatus	2011	0	55,59	0,036	0,003
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Bacillariophyta	Nitzschia acicularis	6272	0	11,12	0,007	0,003
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Treubaria triappendiculata	2155	0	22,23	0,014	0,003
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Monoraphidium arcuatum	1969	0	22,23	0,014	0,003
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Streptophyta	Elakatothrix gelatinosa	2144	0	22,23	0,014	0,002
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Siderocelis ornata	2037	0	11,12	0,007	0,002
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	177,88	0,115	0,002
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Desmodesmus serratus	22674	0	44,47	0,029	0,002
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Pseudoschroederia antillarum	32772	0	22,23	0,014	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Monoraphidium minutum	2962	0	44,47	0,029	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Monoraphidium contortum	2960	0	66,7	0,043	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Choanozoa	Codosiga furcata	41787	0	22,23	0,014	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Heterokontophyta	Chromulina	1250	0	33,35	0,022	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Desmodesmus subspicatus	22649	0	22,23	0,014	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Ankyra judayi	27834	0	11,12	0,007	0,001
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Monomastix minuta	37701	0	22,23	0,014	0,000
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Heterokontophyta	Ochromonas	1304	0	22,23	0,014	0,000
FP_Fondo (6,7m)_20160914_CT	14/09/2016	Fondo	Chlorophyta	Monoraphidium komarkovae	1977	0	11,12	0,007	0,000
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Aulacoseira ambigua	3966	0	1045,04	0,783	1,337
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Cyclostephanos dubius	5913	0	333,52	0,250	0,714
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Cryptomonas erosa	3484	0	33,35	0,025	0,150
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Anabaena circinalis	23804	1	355,76	0,267	0,126
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Pediastrum biradiatum	1081	0	177,88	0,133	0,066
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Aulacoseira granulata	5912	0	200,11	0,150	0,063
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Streptophyta	Cosmarium laeve	2047	0	22,23	0,017	0,054
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Euglenophyta	Trachelomonas	1445	0	11,12	0,008	0,052
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	119468,2	89,558	0,038
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Planktosphaeria gelatinosa	30214	0	33,35	0,025	0,033
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Cryptomonas	513	0	100,06	0,075	0,031
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Euglenophyta	Trachelomonas volvocina	5904	0	33,35	0,025	0,030
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Merismopedia trolleri	24955	0	4002,28	3,000	0,029
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	344,64	0,258	0,029
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Streptophyta	Staurastrum	91	0	11,12	0,008	0,026
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Cryptomonas ovata	3489	0	11,12	0,008	0,026
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Heterokontophyta	Mallomonas	96	0	33,35	0,025	0,025
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Cryptomonas marssonii	3488	0	44,47	0,033	0,024

MINISTERIO DE FOMENTO

				1					
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Puncticulata radiosa	29102	0	88,94	0,067	0,022
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Coelastrum astroideum	1957	0	88,94	0,067	0,021
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Chroococcus	884	0	66,7	0,050	0,018
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Crucigenia tetrapedia	2980	0	200,11	0,150	0,017
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Oocystis lacustris	1987	0	111,17	0,083	0,017
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Pediastrum tetras	1993	0	44,47	0,033	0,017
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Nitzschia	16	0	77,82	0,058	0,016
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Bacillariophyta	Aulacoseira distans	17600	0	111,17	0,083	0,014
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Pseudodidymocystis fina	41123	0	778,22	0,583	0,012
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Desmodesmus communis	19653	0	88,94	0,067	0,009
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Acutodesmus acuminatus	8521	0	44,47	0,033	0,008
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cryptophyta	Chroomonas	627	0	44,47	0,033	0,007
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	133,41	0,100	0,006
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Oocystis borgei	1981	0	22,23	0,017	0,004
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Haptophyta	Chrysochromulina parva	2256	0	133,41	0,100	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Diplochloris decussata	28441	0	466,93	0,350	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Scenedesmus arcuatus	2970	0	44,47	0,033	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Monoraphidium arcuatum	1969	0	22,23	0,017	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	289,05	0,217	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Aphanocapsa holsatica	2186	0	3813,29	2,859	0,003
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Desmodesmus armatus	7948	0	44,47	0,033	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Desmodesmus subspicatus	22649	0	88,94	0,067	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Tetraedron caudatum	1127	0	11,12	0,008	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Monoraphidium minutum	2962	0	55,59	0,042	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Streptophyta	Elakatothrix gelatinosa	2144	0	22,23	0,017	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Monoraphidium contortum	2960	0	77,82	0,058	0,002
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Cyanobacteria	Aphanizomenon gracile	4670	1	88,94	0,067	0,001
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Closteriopsis acicularis	3283	0	11,12	0,008	0,001
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Chlorophyta	Ankyra judayi	27834	0	11,12	0,008	0,001
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Heterokontophyta	Ochromonas	1304	0	33,35	0,025	0,000
FP_Zeu (0-1,87m)_20160914_CT	14/09/2016	Fótica (0-1,87m)	Heterokontophyta	Chromulina	1250	0	22,23	0,017	0,000
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Acutodesmus acuminatus	8521	0	13,7	0,080	0,003
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Aphanizomenon gracile	4670	1	315,13	1,940	0,003
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Aphanocapsa	654	0	4.679	28,810	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Aphanocapsa delicatissima	23906	0	1.257,11	7,740	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Bacillariophyta	Asterionella formosa	713	0	287,73	1,770	0,0057805
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Bacillariophyta	Aulacoseira ambigua	3966	0	23,98	0,150	0,0306781
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cryptophyta	Chroomonas	627	0	140,44	0,860	0,020717
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Haptophyta	Chrysochromulina parva	2256	0	1472,91	9,070	0,0327902
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Coenochloris fottii	1963	0	68,51	0,420	
ED E1- (0.0) 00404044 OT	11/10/2016	Fondo (6,0m)	Streptophyta	Cosmarium laeve	2047	0	10,28	0,060	0,0248838
FP_Fondo (6,0m)_20161011_CT	11/10/2010		'''						

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CEDEX

			ı	1					
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas	513	0	3,43	0,020	0,001062
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas erosa	3484	0	20,55	0,130	0,092589
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas marssonii	3488	0	30,83	0,190	0,0168258
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	2702,62	16,640	0,0008691
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus armatus	7948	0	41,1	0,250	0,0020518
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus communis	19653	0	41,1	0,250	0,0042006
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus subspicatus	22649	0	82,21	0,510	0,002015
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Dictyosphaerium	1024	0	54,81	0,340	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Dictyosphaerium pulchellum	1025	0	54,81	0,340	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	1.479,76	9,110	0,0138224
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Diplochloris lunata	8006	0	116,46	0,720	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Streptophyta	Elakatothrix gelatinosa	2144	0	6,85	0,040	0,0005516
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Euglenophyta	Euglena proxima	5886	0	3,43	0,020	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Golenkinia radiata	1965	0	3,43	0,020	0,0009565
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Dinophyta	Gymnodinium	1364	0	6,85	0,040	0,0003432
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Dinophyta	Gymnodinium varians	3364	0	6,85	0,040	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Kirchenriella contorta	22239	0	47,96	0,300	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Heterokontophyta	Mallomonas	96	0	6,85	0,040	0,0052109
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Merismopedia trolleri	24955	0	301,43	1,860	0,0021819
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Micractinium pusillum	1968	0	301,43	1,860	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Monoraphidium contortum	2960	0	164,42	1,010	0,003296
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Monoraphidium komarkovae	1977	0	37,68	0,230	0,0482047
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Monoraphidium minutum	2962	0	3,43	0,020	0,0001117
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Bacillariophyta	Nitzschia	16	0	6,85	0,040	0,001426
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Oocystis	1074	0	13,7	0,080	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Oocystis lacustris	1987	0	109,61	0,670	0,0167516
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Pediastrum boryanum	53	0	27,4	0,170	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Pediastrum duplex	55	0	109,61	0,670	0,0018405
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	116,43	0,720	0,0096822
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Pseudodidymocystis fina	41123	0	34,25	0,210	0,0005418
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Heterokontophyta	Pseudopedinella	1352	0	20,55	0,130	0,0025791
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Bacillariophyta	Puncticulata radiosa	29102	0	208,95	1,290	0,0516854
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Scenedesmus arcuatus	2970	0	54,81	0,340	0,0034017
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Scenedesmus denticulatus	1102	0	13,7	0,080	0,0016925
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Charophyta	Staurodesmus	484	0	3,43	0,020	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Tetraedron caudatum	1127	0	3,43	0,020	0,0006447
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Tetrastrum komarekii	17284	0	356,24	2,190	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	82,21	0,510	0,003722
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Ochrophyta	Trachydiscus	1589	0	17,13	0,110	
FP_Fondo (6,0m)_20161011_CT	11/10/2016	Fondo (6,0m)	Cyanobacteria	Woronichinia naegeliana	25687	1	914,57	5,630	1,8044663
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Ankistrodesmus fusiformis	1929	0	6,9	0,050	0,0088272
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Aphanizomenon gracile	4670	1	224,13	1,620	0,0021924

MINISTERIO DE FOMENTO

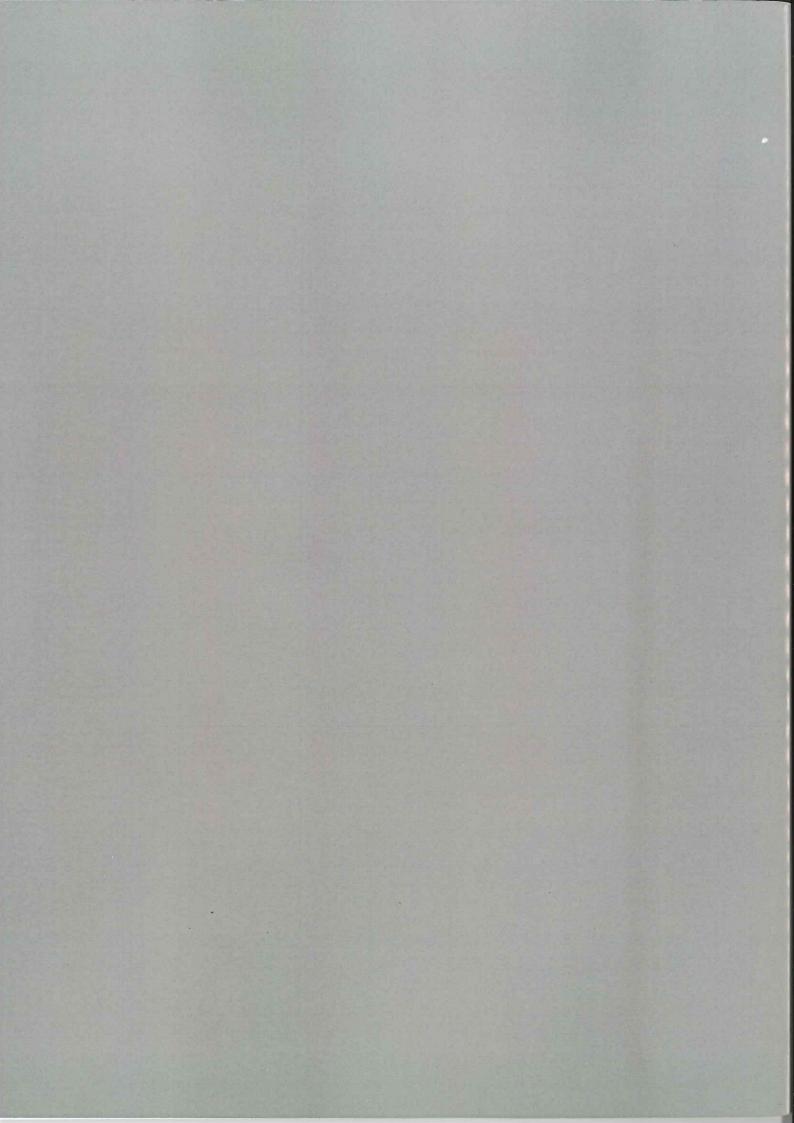
50 7 40 0 05 N 0040444 0T	4444010040	E(ii (0.00E.)			054		4.070	00.070	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Aphanocapsa	654	0	4.676	33,870	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Aphanocapsa incerta	2190	0	1.727,50	12,510	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Bacillariophyta	Asterionella formosa	713	0	82,75		0,0016624
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Bacillariophyta	Aulacoseira ambigua	3966	0	68,96	0,500	0,0882219
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Bacillariophyta	Aulacoseira granulata	5912	0	6,9	0,050	0,0021558
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)		Botryococcus braunii	2154	0	31,03	0,220	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Chroococcus limneticus	5866	0	20,69	0,150	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cryptophyta	Chroomonas	627	0	48,27	0,350	0,0071206
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Haptophyta	Chrysochromulina parva	2256	0	1.030,98	7,470	0,0229519
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Coelastrum astroideum	1957	0	13,79	0,100	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Coenochloris fottii	1963	0	196,54	1,420	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Streptophyta	Cosmarium laeve	2047	0	3,45	0,020	0,0083511
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Crucigenia tetrapedia	2980	0	431,01	3,120	0,0375419
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cryptophyta	Cryptomonas erosa	3484	0	24,14	0,170	0,1087639
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cryptophyta	Cryptomonas marssonii	3488	0	3,45	0,020	0,0018829
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cryptophyta	Cryptomonas pyrenoidifera	27400	0	6,9	0,050	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	1.965,42	14,240	0,0006321
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Desmodesmus armatus	7948	0	55,17	0,400	0,0027542
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Desmodesmus communis	19653	0	27,58	0,200	0,0028188
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Desmodesmus subspicatus	22649	0	41,38	0,300	0,0010143
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Dictyosphaerium pulchellum	1025	0	72,41	0,520	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	1.482,69	10,740	0,0138497
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Dictyosphaerium tetrachotomum	1028	0	55,17	0,400	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Diplochloris lunata	8006	0	193,09	1,400	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Streptophyta	Elakatothrix gelatinosa	2144	0	13,79	0,100	0,0011104
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Golenkinia radiata	1965	0	3,45	0,020	0,0009621
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Dinophyta	Gymnodinium mitratum	8719	0	3,45	0,020	0,0001137
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Kirchenriella	1056	0	24,14	0,170	0,0011272
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Lagerheimia ciliata	29288	0	3,45	0,020	
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Heterokontophyta	Mallomonas	96	0	6,90	0,050	0,005249
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cyanobacteria	Merismopedia trolleri	24955	0	331,02	2,400	0,002396
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Monoraphidium arcuatum	1969	0	3,45	0,020	0,0004252
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Monoraphidium contortum	2960	0	196,54	1,420	0,0039399
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Monoraphidium minutum	2962	0	10,34	0,070	0,0003367
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Nephrochlamys subsolitaria	29544	0	13,79	0,100	0,0104913
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Oocystis lacustris	1987	0	72,41	0,520	0,0110663
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Pediastrum duplex	55	0	55,17		0,0009264
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	20,69		0,0017206
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Planktosphaeria gelatinosa	30214	0	6,90		0,0068276
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Pseudodidymocystis fina	41123	0	96,55		0,0015272
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Heterokontophyta	Pseudopedinella	1352	0	31,03		0,0038945
FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Pseudoschroederia antillarum	32772	0	3,45		0,0005084
11 _200 (0 2,2011)_20101011_01	11/10/2010	1 0000 (0-2,2011)	o.iioi opiiyta	i soudosomocaena anunarum	OLITZ		0,40	0,020	0,0000004

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

CEDEX

P.Z.										
P. Zeu (G-2,25m), 2016101 CT 11102016 Fotos (P-2,25m) Shepphysa Starratum 611 0 0 5.00 0.004241 P. Zeu (G-2,5m) 2016101 CT 11102016 Fotos (P-2,25m) Shepphysa Starratum 611 0 0 5.00 0.005	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Bacillariophyta	Puncticulata radiosa	29102	0	86,20	0,620	0,0213222
P. Zeu (D-22 Em), 2016 1011, CT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Scenedesmus	44	0	6,90	0,050	0,0010673
P. Zeu (P-2 zem 2018101 LCT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Scenedesmus arcuatus	2970	0	55,17	0,400	0,0034241
P. Zeu (0-2.2 m), 2019/01/1_CT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Streptophyta	Staurastrum	91	0	6,90	0,050	0,016251
PP_Earl (Pc_2Sm)_2016101_CT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Tetraedron caudatum	1127	0	6,90	0,050	0,0012969
PP_Endo (6.0m)_2016110_CT 11/102016 Fotics (0.2.2em)	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Tetrastrum komarekii	17285	0	96,55	0,700	
PF_Fondo (6.0m), 20161110, CT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	96,55	0,700	0,0043712
PF-Endrod (6,6m)_20161110_CT	FP_Zeu (0-2,25m)_20161011_CT	11/10/2016	Fótica (0-2,25m)	Ochrophyta	Trachydiscus	1589	0	58,62	0,420	
PP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Acutodesmus acuminatus	8521	0	61,67	0,170	0,0114132
PP_Fondo (6,0m)_20161110_CT 10112016 Fondo (6,0m) Cyanobacteria Aphanocapsa incerta 2190 0 3.484.51 9.530 0.778041 PP_Fondo (6,0m)_20161110_CT 10112016 Fondo (6,0m) Bacillariophyta Aulacoseira ambigua 3866 0 123.35 0.340 0.1578041 PP_Fondo (6,0m)_20161110_CT 10112016 Fondo (6,0m) Chicophyta Chiamydomonas 71 0 15.42 0.040 0.03633 PP_Fondo (6,0m)_20161110_CT 10112016 Fondo (6,0m) Aphanocapsa Chicago Company 1 0 15.42 0.040 0.03633 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Aphanocapsa Codesiga funciata 41767 0 15.42 0.040 0.002746 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Chrysochromulina parva 2256 0 123.35 0.30 0.002746 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Chrysochromulina parva 2256 0 123.35 0.30 0.002746 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Chrysochromulina parva 2256 0 15.42 0.040 0.00266 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Chrysochromas 2360 0 1017,6 2780 0.0886351 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chrystophyta Chrysomonas erosa 3484 0 107,93 0.300 0.4882837 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chrystophyta Chrysomonas erosa 3488 0 61,67 0.770 0.0336571 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Seciliarophyta Chrysomonas erosa 3488 0 61,67 0.770 0.0336571 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Seciliarophyta Chrystopheres dubius 32677 0 2598,42 7.000 0.000231 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Seciliarophyta Chrystopheres dubius 5913 0 189,6 0.400 0.330036 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Desmodesmus communis 19653 0 30.33 0.440 0.3315155 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Desmodesmus subspiciatus 2205 0 61,67 0,170 0.030036 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Desmodesmus subspiciatus 2205 0 61,67 0,170 0.030036 PP_Fondo (6,0m)_20161110_CT 101112016 Fondo (6,0m) Chicophyta Desmodesmus subspiciatus 2205 0 61,67 0,000 0.000297 PP_Fondo (6,0m)_20161110_CT 10111	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Aphanizomenon gracile	4670	1	215,85	0,590	0,0021114
PF_Fondo (6,0m_, 20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Aphanocapsa	654	0	5.874	16,070	
PP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Aphanocapsa incerta	2190	0	3.484,51	9,530	
PP_Enodo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Bacillariophyta	Aulacoseira ambigua	3966	0	123,35	0,340	0,1578041
FP_Fonde (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Chlamydomonas	71	0	15,42	0,040	0,03633
PP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cryptophyta	Chroomonas	627	0	30,84	0,080	0,0045494
FP_Fondo (6,0m), 20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Haptophyta	Chrysochromulina parva	2256	0	123,35	0,340	0,002746
FP_Fondo (6.0m) 20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Choanozoa	Codosiga furcata	41787	0	15,42	0,040	0,002895
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Crucigenia tetrapedia	2980	0	1017,6	2,780	0,0886351
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas	513	0	15,42	0,040	0,0047743
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas erosa	3484	0	107,93	0,300	0,4862837
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cryptophyta	Cryptomonas marssonii	3488	0	61,67	0,170	0,0336571
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	2559,42	7,000	0,0008231
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Desmodesmus denticulatus 19595 0 61,67 0,170 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Desmodesmus opoliensis 22705 0 61,67 0,170 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Desmodesmus subspicatus 22649 0 215,85 0,590 0,0052907 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 4039,56 11,050 0,0377333 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Streptophyta Elakatothrix gelatinosa 2144 0 107,93 0,300 0,0086907 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Bacillariophyta Fragilaria crotonensis 6122 0 46,25 0,130 0 0 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Dinophyta Gymnodinium varians 3364 0 15,	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Bacillariophyta	Cyclostephanos dubius	5913	0	169,6	0,460	0,3630036
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Desmodesmus opoliensis 22705 0 61,67 0,170 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Desmodesmus subspicatus 22649 0 215,85 0,590 0,0052907 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Dictyosphaerium subsolitarium 28332 0 4039,56 11,050 0,0377333 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Dictyosphaerium subsolitarium 1028 0 925,09 2,530 Image: Company of the compan	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus communis	19653	0	308,36	0,840	0,0315155
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus denticulatus	19595	0	61,67	0,170	
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus opoliensis	22705	0	61,67	0,170	
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Desmodesmus subspicatus	22649	0	215,85	0,590	0,0052907
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Streptophyta Elakatothrix gelatinosa 2144 0 107,93 0,300 0,0086907 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Bacillariophyta Fragilaria crotonensis 6122 0 46,25 0,130 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Dinophyta Gymnodinium 1364 0 15,42 0,040 0,0007725 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Dinophyta Gymnodinium varians 3364 0 15,42 0,040 0 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Hariotina reticulata 37806 0 138,76 0,380 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Kirchenriella 1056 0 30,84 0,080 0,0144 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 185,02 0,510	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	4039,56	11,050	0,0377333
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Bacillariophyta Fragilaria crotonensis 6122 0 46,25 0,130 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Dinophyta Gymnodinium 1364 0 15,42 0,040 0,0007725 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Dinophyta Gymnodinium varians 3364 0 15,42 0,040 0 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Hariotina reticulata 37806 0 138,76 0,380 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Kirchenriella 1056 0 30,84 0,080 0,00144 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Cyanobacteria Merismopedia trolleri 24955 0 3.021,96 8,270 0,0218741 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 15,42 0,040 0,001906	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Dictyosphaerium tetrachotomum	1028	0	925,09	2,530	
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Streptophyta	Elakatothrix gelatinosa	2144	0	107,93	0,300	0,0086907
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Bacillariophyta	Fragilaria crotonensis	6122	0	46,25	0,130	
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Hariotina reticulata 37806 0 138,76 0,380 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Kirchenriella 1056 0 30,84 0,080 0,00144 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Cyanobacteria Merismopedia trolleri 24955 0 3.021,96 8,270 0,0218741 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 185,02 0,510 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium arcuatum 1969 0 15,42 0,040 0,0019006 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Dinophyta	Gymnodinium	1364	0	15,42	0,040	0,0007725
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Kirchenriella 1056 0 30,84 0,080 0,00144 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Cyanobacteria Merismopedia trolleri 24955 0 3.021,96 8,270 0,0218741 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 185,02 0,510 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium arcuatum 1969 0 15,42 0,040 0,0019006 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Dinophyta	Gymnodinium varians	3364	0	15,42	0,040	
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Cyanobacteria Merismopedia trolleri 24955 0 3.021,96 8,270 0,0218741 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 185,02 0,510 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium arcuatum 1969 0 15,42 0,040 0,0019006 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Hariotina reticulata	37806	0	138,76	0,380	
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Micractinium pusillum 1968 0 185,02 0,510 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium arcuatum 1969 0 15,42 0,040 0,0019006 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Kirchenriella	1056	0	30,84	0,080	0,00144
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium arcuatum 1969 0 15,42 0,040 0,0019006 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Merismopedia trolleri	24955	0	3.021,96	8,270	0,0218741
FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Chlorophyta Monoraphidium contortum 2960 0 215,85 0,590 0,004327 FP_Fondo (6,0m)_20161110_CT 10/11/2016 Fondo (6,0m) Heterokontophyta Nephrodiella lunaris 27482 0 30,84 0,080	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Micractinium pusillum	1968	0	185,02	0,510	
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Monoraphidium arcuatum	1969	0	15,42	0,040	0,0019006
FP_Fondo (6,0m)_20161110_CT	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Monoraphidium contortum	2960	0	215,85	0,590	0,004327
	FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Heterokontophyta	Nephrodiella lunaris		0		0,080	
									0,040	0,00321
FP_Fondo (6,0m)_20161110_CT	_ (, ,									

MINISTERIO DE FOMENTO


FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Pediastrum duplex	55	0	123,35	0,340	0,0020712
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	138,76	0,380	0,0115392
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Polytoma cordatum	37704	0	15,42	0,040	
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Pseudodidymocystis fina	41123	0	123,35	0,340	0,0019512
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Pseudodidymocystis planctonica	30554	0	30,84	0,080	
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Heterokontophyta	Pseudopedinella	1352	0	15,42	0,040	0,0019353
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Bacillariophyta	Puncticulata radiosa	29102	0	292,95	0,800	0,0724635
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Scenedesmus arcuatus	2970	0	154,18	0,420	0,0095691
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Streptophyta	Staurastrum	91	0	30,84	0,080	0,0726349
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Bacillariophyta	Staurosira venter	30576	0	92,51	0,250	
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Tetraedron caudatum	1127	0	30,84	0,080	0,0057964
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Tetrastrum komarekii	17285	0	740,07	2,020	
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	246,69	0,670	0,0111686
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Chlorophyta	Tetrastrum triangulare	2000	0	61,67	0,170	
FP_Fondo (6,0m)_20161110_CT	10/11/2016	Fondo (6,0m)	Cyanobacteria	Woronichinia naegeliana	25687	1	10.977,74	30,030	21,659318
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cyanobacteria	Aphanizomenon gracile	4670	1	767,10	2,240	0,0075037
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cyanobacteria	Aphanocapsa	654	0	2901,66	8,470	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Aulacoseira ambigua	3966	0	33,35	0,100	0,0426653
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Aulacoseira distans	17600	0	33,35	0,100	0,0042149
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Aulacoseira granulata	5912	0	50,03	0,150	0,0156308
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Aulacoseira subarctica	18012	0	66,70	0,190	0,0053708
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)		Aulomonas purdyi	17390	0	16,68	0,050	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Chlamydomonas	71	0	33,35	0,100	0,0785736
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Heterokontophyta	Chromulina	1250	0	16,68	0,050	0,0002776
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Chroomonas	627	0	133,41	0,390	0,01968
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Haptophyta	Chrysochromulina parva	2256	0	450,26	1,310	0,0100238
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Coenochloris fottii	1963	0	366,88	1,070	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Crucigenia tetrapedia	2980	0	1100,63	3,210	0,0958672
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Cryptomonas	513	0	16,68	0,050	0,0051644
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Cryptomonas erosa	3484	0	416,90	1,220	1,8783626
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Cryptomonas marssonii	3488	0	283,50	0,830	0,1547233
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Cryptomonas ovata	3489	0	33,35	0,100	0,0782465
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cyanobacteria	Cyanodictyon imperfectum	32677	0	6820,56	19,900	0,0021934
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Cyclostephanos dubius	5913	0	16,68	0,050	0,0357011
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Desmodesmus armatus	7948	0	533,64	1,560	0,02664
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Desmodesmus communis	19653	0	533,64	1,560	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Desmodesmus denticulatus	19595	0	66,70	0,190	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Desmodesmus subspicatus	22649	0	66,70	0,190	0,0016349
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Dictyosphaerium subsolitarium	28332	0	3.351,91	9,780	0,03131
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Dictyosphaerium tetrachotomum	1028	0	2.000,11	0,580	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Diplochloris lunata	8006	0	200,11	0,580	

MINISTERIO DE FOMENTO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Kirchenriella	1056	0	66,7	0,190	0,0031144
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Kirchenriella contorta	22239	0	83,38	0,240	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Heterokontophyta	Mallomonas	96	0	50,03	0,150	0,0380588
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Heterokontophyta	Mallomonas akrokomos	1339	0	16,68	0,050	0,011265
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cyanobacteria	Merismopedia trolleri	24955	0	266,82	0,780	0,0019313
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Monoraphidium arcuatum	1969	0	33,35	0,100	0,0041106
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Monoraphidium contortum	2960	0	283,5	0,830	0,0056831
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Monoraphidium tortile	29511	0	16,68	0,050	0,0001207
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Nitzschia acicularis	6272	0	16,68	0,050	0,00037
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Oocystis lacustris	1987	0	400,23	1,170	0,0611668
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Pediastrum duplex	55	0	800,46	2,340	0,013441
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cryptophyta	Plagioselmis nannoplanctica	27403	0	433,58	1,270	0,0360562
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Pseudodidymocystis fina	41123	0	100,06	0,290	0,0015828
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Pseudopediastrum boryanum	21249	0	66,70	0,190	0,0023998
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Heterokontophyta	Pseudopedinella	1352	0	50,03	0,150	0,0062791
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Bacillariophyta	Puncticulata radiosa	29102	0	650,37	1,900	0,1608741
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Choanozoa	Stelexomonas dichotoma	27461	0	33,35	0,100	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Tetraedron caudatum	1127	0	16,68	0,050	0,003135
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Tetrastrum komarekii	17285	0	2.134,55	6,230	
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Chlorophyta	Tetrastrum staurogeniaeforme	1998	0	200,11	0,580	0,0090598
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Euglenophyta	Trachelomonas	1445	0	16,68	0,050	0,077775
FP_Zeu (0-2,5m)_20161110_CT	10/11/2016	Fótica (0-2,5m)	Cyanobacteria	Woronichinia naegeliana	25687	1	9.989,04	29,150	19,708592

MINISTERIO DE FOMENTO

